
Click
Here

for

Full
Article

Assessing general relationships between aboveground biomass
and vegetation structure parameters for improved carbon
estimate from lidar remote sensing
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[1] Lidar‐based aboveground biomass is derived based on the empirical relationship
between lidar‐measured vegetation height and aboveground biomass, often leading to large
uncertainties of aboveground biomass estimates at large scales. This study investigates
whether the use of any additional lidar‐derived vegetation structure parameters besides
height improves aboveground biomass estimation. The analysis uses data collected in the
field and with the Laser Vegetation Imaging Sensor (LVIS), and the Echidna® validation
instrument (EVI), a ground‐based hemispherical‐scanning lidar data in New England in
2003 and 2007. Our field data analysis shows that using wood volume (approximated by the
product of basal area and top 10% tree height) and vegetation type (conifer/softwood or
deciduous/hardwood forests, providing wood density) has the potential to improve
aboveground biomass estimates at large scales. This result is comparable to previous
individual‐tree based analyses. Our LVIS data analysis indicates that structure parameters
that combine height and gap fraction, such as RH100*cover and RH50*cover, are closely
related to wood volume and thus biomass particularly for conifer forests. RH100*cover
and RH50*cover perform similarly or even better than RH50, a good biomass predictor
found in previous study. This study shows that the use of structure parameters that combine
height and gap fraction (rather than height alone) improves the aboveground biomass
estimate, and that the fusion of lidar and optical remote sensing (to provide vegetation type)
will provide better aboveground biomass estimates than using lidar alone. Our ground lidar
analysis shows that EVI provides good estimates of wood volume, and thus accurate
estimates of aboveground biomass particularly at the stand level.
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1. Introduction

[2] Lidar remote sensing provides measurements of the
horizontal and vertical vegetation structure of ecosystems.
This information will be critical for estimating global carbon
storage and assessing ecosystem response to climate change
and natural and anthropogenic disturbances. Unlike many
other remote sensing measurements, lidars provide direct and
indirect measurements of vegetation structure which can be
used to estimate global carbon storage [Dubayah and Drake,
2000]. Recent advances in lidar technology have made lidar

data widely available to study vegetation structure char-
acteristics and forest biomass. The spaceborne Geoscience
Laser Altimeter System (GLAS), part of the ICESat mission,
provides global lidar data with a variable diameter of ∼70 m
footprint spaced at ∼170 m [Zwally et al., 2002; Harding and
Carabajal, 2005; Lefsky et al., 2005]. Airborne data have also
been collected using a Scanning Lidar Imager of Canopies by
Echo Recovery (SLICER) with a 15m footprint and the Laser
Vegetation Imaging Sensor (LVIS)with a 20m/25m footprint
over several large areas for improved vegetation structure
characterization [Blair et al., 1999]. Small‐footprint multiple
return lidar data have also been collected in many regions
of the globe [Jupp et al., 2005] and more recently small foot-
print scanning waveform systems have become operational
[Gutierrez et al., 2005; Neuenschwander et al., 2008]. Many
studies have demonstrated the potential use of spaceborne and
airborne lidar data to map vegetation height, aboveground
biomass characteristics, and other vegetation structure param-
eters [Simard et al., 2008; Lefsky et al., 1999, 2002, 2005,
2007; Harding et al., 2001; Harding and Carabajal, 2005;
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Drake et al., 2002a, 2002b, 2003; Nelson et al., 1984, 1988,
1997, 2009; Patenaude et al., 2004]. The National Decadal
Survey report [National Research Council, 2007] also re-
commended two new lidar missions, the Ice Cloud and Land
Elevation Satellite‐II (ICESat‐II) and the Deformation, Eco-
system Structure, andDynamics of Ice (DESDynI), tomeasure
the horizontal and vertical structure of ecosystems for esti-
mating global carbon storage and ecosystem response to cli-
mate change and human land use. Both the ICESat‐II and
DESDynI missions expect to provide measurements of veg-
etation structure to estimate aboveground biomass and carbon
stocks with greatly reduced uncertainties.
[3] Carbon stocks or aboveground biomass are not directly

measured by lidar. But many studies have demonstrated the
strong relationship between aboveground biomass and lidar
measured tree height, ranging from boreal conifers to equa-
torial rain forests [Lefsky et al., 2005; Drake et al., 2002a,
2002b]. These relationships are used to derive aboveground
biomass from lidar‐measured vegetation height [Lefsky et al.,
2005] or accumulated vegetation lidar returns [Drake et al.,
2002a, 2002b, 2003] at large scales.
[4] However, large uncertainties still exist in large‐scale

aboveground biomass estimates from lidar. Forest above-
ground biomass is actually related to several woody structure
parameters, including trunk diameter at breast height, height
of canopy, stem density, and branch distribution, but height is
the only woody structure parameter directly measured by
lidar. Thus aboveground biomass has been indirectly derived
based on empirical relationships with lidar measured vege-
tation height or accumulated lidar returns from vegetation.
Often these relationships are site‐dependent and lead to large
uncertainties when applied over large regions, verifying that
height may not be the only structure parameter relating to
biomass. Drake et al. [2002a, 2002b] found that the height of
medium energy returns (RH50) is better related to above-
ground biomass than the height at full energy returns
(RH100) due to RH50 being more sensitive to changes in
both the vertical arrangement of canopy elements and the
degree of canopy openness (including tree density) than
height itself. Thus further investigation is required to have a
clear understanding of the links between aboveground bio-
mass, vegetation structure parameters measured from field
and from lidar in order to develop a more physically based
approach for improved aboveground biomass estimates from
lidar. This will also help us to better understand the above-
ground biomass retrieval accuracy from lidar for the ICESat‐
II and DESDynI missions. This study is a first step into this
direction, and uses field measurements of vegetation structure
and both airborne LVIS and hemispherical scanning ground
lidar EVI data collected in the New England region in 2003
and 2007.

2. Review of Aboveground Biomass Estimate

[5] Two approaches are commonly used to estimate
aboveground biomass. One is an allometric approach to
estimate biomass based on a given tree diameter at breast
height (DBH) and the other one is using wood volume
to calculate biomass (see Brown [2002] for an extensive
review).
[6] The most common approach used to estimate above-

ground biomass is through allometric equations which esti-

mate the aboveground tree biomass (AGB) in relation to a
given tree diameter value (D), usually measured at 1.3 m,

AGB ¼ aDb ð1Þ
where a and b are scaling coefficient and scaling exponent,
respectively, which vary with species, sites and age. Usually
a and b are obtained through empirical regression of log‐
transformed data of biomass and diameter pairs measured
from destructively sampled trees. For example, Jenkins et al.
[2004] and Ter‐Mikaelian and Korzukhin [1997] list a and b
values from species in the United States. This approach is
laborious and time‐consuming.
[7] Many studies have investigated how a and b are related

to stand structure and age. West et al. [1999] used the fractal
properties of tree branching networks and developed a geo-
metric model of tree structure which predicts aboveground
biomass from tree diameter and estimates the exponential
factor b = 8/3 = 2.67 independently of species, site and age.
Enquist et al. [1999] suggested that a is related to wood
density; however, Chambers et al. [2001] found a = 0.1.
[8] Many other studies found that a and b varies by species,

sites, and even stand ages. Ketterings et al. [2001] found that
a and b vary between sites and suggested that b can be esti-
mated from the site‐specific relationship between height and
diameter, H = kDb−2 and a = rr, where r is expected to be
relatively stable across sites and r is the wood density. Zianis
and Mencuccini [2004] used fractal geometry and found that
the scaling exponent b is between 2 and 3 and should be
obtained based on tree height/size (or stand age). Their result
is consistent with the finding byKetterings et al. [2001] that b
is related to tree height. Their study also found a statistically
significant difference between theoretical and empirical va-
lues of the allometric exponent (b = 2.3679 versus b = 2.67).
Pilli et al. [2006] analyzed 49 data sets of different species
and found that b is also related to tree stand age, species and
site and a is correlated to wood density. All these studies
indicate that tree height/age based allometric equations
are possible especially if such measures can be derived from
lidar.
[9] The allometric approach to estimate aboveground bio-

mass requires measurement of the diameter for each indi-
vidual trees and the availability of allometric equation that are
appropriate for each individual tree species. Developing
allometric equations for each individual species can be very
difficult particularly in tropical forests. Chave et al. [2005]
used a single pan‐tropical wood volume‐based approach to
estimate aboveground biomass at plot level. The basic
hypothesis is that aboveground biomass for each tree is pro-
portional to wood volume (product of height and basal area)
[Chave et al., 2005]:

AGB ¼ F � � � � � D
2

4
� H

� ��

ð2Þ

where H is tree height, r is the wood density (dry weight
per unit volume in g/cm3) and b < 1. F is a constant factor
depending on tree taper. For broadleaf species, F = 0.06
[Chave et al., 2005]. Their study demonstrates that the
inclusion of wood density and wood volume improves bio-
mass estimates.
[10] However the wood volume‐based approach is not

often used due to the difficulty to obtain height measurements
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for each individual tree. One way to overcome this problem is
to use the further allometric relationship, H ≈ Db, to calculate
height from trunk diameter. However, in reality a power law
is not the best relationship for predicting height from diam-
eter, and can often lead to a biased estimate of aboveground
biomass equations [Chave et al., 2005]. Despite this draw-
back when individual height values are not available, the
wood volume‐based approach has been proved to be an
effective approach to study the parametric values of diameter‐
based allometric equations [Pilli et al., 2006; Zianis and
Mencuccini, 2004] and to estimate aboveground biomass at
a plot level [Chave et al., 2005]. This study uses this approach
to revisit the relationship between aboveground biomass and
vegetation structure parameters at different scales and uses
these relationships to further understand the relations between
biomass and lidar structure parameters.

3. Site and Data Description

3.1. Study Sites

[11] This study used data collected in temperate forests in
New England. Our study sites include many plots in Harvard
Forest (HF), MA, Bartlett Experimental Forest (BEF), NH,
and the Forest Ecosystem Research site in Howland, ME (see
Figure 1). HF is a 60–70 year oldmixed deciduous forest. The
stand is in the transition hardwoods‐white pine‐hemlock
zone [Spurr, 1956], and is composed mainly of red oak, red
maple, yellow birch, white birch, beech, white pine, and
hemlock. BEF includes old‐growth northern hardwoods with
beech, yellow birch, sugar maple, and eastern hemlock. The
natural stands in Howland, ME, is the boreal‐northern hard-
wood transitional forest and consists of spruce‐hemlock‐fir,
aspen‐birch, and hemlock‐hardwood mixtures. Our study
sites cover large forested regions with various climate con-

ditions and should be a good representation of the forests in
the northeastern United States.

3.2. Data Sets

[12] Data sources used in this study include: vegetation
structure field data collected in 2003 and 2007, LVIS data
collected in 2003 and ground lidar data collected in 2007.
There is a four year difference between these data sets. We
observed that growth, for example, at the sparse shelterwood
site in Howland, Maine, plays a role in LVIS and modeled
waveform comparison (W. Yang et al., unpublished manu-
script, 2009). However, a field DBH comparison in Howland,
MN from 1989 to 2003 does not show much growth. A LVIS
and EVI height comparison also does not show any impact
of growth so growth was ignored in this study.
3.2.1. Field Measurements
[13] Two sets of ground tree structure field data were

used in this study. The first includes 6 stands (28 plots with a
20 m/25 m radius) of tree data collected in summer, 2007 in
three forest sites (Harvard Forest, MA, Bartlett Experimental
Forest, NH, and the Forest Ecosystem Research site in
Howland,ME). The second is a complete standmap collected
in 2003 in the Forest Ecosystem Research site in Howland,
ME (see Figure 1 for the locations of our study plots and the
stem map area). These two data sets were collected over
relatively flat terrains.
3.2.1.1. The 2007 Field Data
[14] The 2007 ground data include vegetation structure

data collected in six stands with two stands selected in each
forest (Harvard Forest, MA, Bartlett Experimental Forest,
NH, and the Forest Ecosystem Research site in Howland,
ME) and each stand represents the unique canopy cover
composition commonly seen in this region, e.g., deciduous
forest dominated, conifer forest dominated, or partially har-
vested forest. Our sites were purposely selected to encompass
most forest cover types available in New England. Within
each stand, tree data were collected in 5 plots (except only 3
plots near the tower site in Howland). Each is a circle area
with a 20 m radius (except for 25 m in the hardwood site in
Harvard Forest due to lower tree density). One plot is at the
stand center, while the rest are 30–50 m away from the center
at each of the 90 degree angles (see the bottom right square in
Figure 1). Diameter at Breast Height (DBH), tree species, tree
status, and crown status were sampled for trees with DBH > =
10cm, smaller trees (DBH between 3 and 10 cm) were mea-
sured within 10 m of plot center. In addition, 10 trees were
selected in each plot for additional tree height and crown size
measurements.
3.2.1.2. The 2003 Stem Map Data
[15] The 2003 stem map in the Forest Ecosystem Research

site in Howland, ME is a 200 m × 150 m rectangular area
(except for a 30 m × 30 m plot) near the experimental forest’s
flux tower (see Figure 1). Tree species, DBH, tree status
(alive, dead), and crown status (dominance of the tree crown)
were sampled for a total amount of ∼7800 trees in 2003.
Similar data collected in 1989 were used to verify our tree
height allometric equations. Instead of using the originally
designed rectangular plot for 2003 data, a circular plot (20 m
in radius) was used to be consistent with the other data sets
used in this study (see the top right square in Figure 1).

Figure 1. Locations of our study sites (blue dots and black
square) in New England and sampling strategies, including
2003 stem map boundary and plot range (in circles) (top
square) and the spatial arrangement of 2007 field data (bottom
square). The plot sizes are 20 m/25 m radius circles with 5 m
geolocation accuracy.
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3.2.2. Lidar Data
[16] Two sets of lidar data collected at our study sites were

used in our analysis. One is the LVIS, or the “Laser Vege-
tation Imaging Sensor” and the other is a hemispherical
scanning ground lidar, the Echidna® validation instrument
(EVI) [Jupp et al., 2005, 2009; Strahler et al., 2008].
3.2.2.1. LVIS Data
[17] In summer 2003, LVIS was flown over several regions

in New England [Blair et al., 2006]. The LVIS data used in
this study were acquired on 18–20 July 2003 in Bartlett, NH,
26 July 2003 in Howland, ME, and 20 July 2003 in Harvard,
MA. The flights altitude are ∼10 km, producing footprint size
of ∼ 20 m, separated by roughly the same distance both along
and across track.
[18] LVIS is an airborne laser altimeter system, designed,

developed and operated by the Laser Remote Sensing
Laboratory at NASA’s Goddard Space Flight Center. The
onboard laser generates Gaussian shaped optical pulses at a
wavelength of 1064 nm [Blair et al., 1999]. The vertical
sampling resolution of LVIS is 30 cm (1 ns). LVIS footprint
sizes (diameter) typically vary between 10 to 25 m depending
on the mission flight altitude. To be consistent with other data
sets, the vegetation structure parameters derived from LVIS
were also binned in each plot where ground structure data
were collected. LVIS has a published geolocation accuracy of
1 m or less for this data set [Blair et al., 2006]. Our analysis
indicates that LVIS geolocation data match very well with
IKONOS data.
3.2.2.2. Ground Lidar Data
[19] Concurrently with the ground structure data collection,

a hemispherical scanning ground lidar, the Echidna® vali-
dation instrument (EVI) [Jupp et al., 2005, 2009; Strahler
et al., 2008] was deployed in the same sites as our ground
data collection. One set of EVI scan data were collected for
each plot in each stand in 2007. EVI, developed by CSIRO
Australia as part of its canopy lidar initiative, is a ground‐
based, upward hemispherical‐scanning, full waveform digi-
tized, terrestrial lidar instrument and allows acquisition of
vegetation canopy structure data, including height, basal area,
and stem counts, as well as accurate information on standing
woody and green biomass for carbon balance inventory and
mapping [Jupp et al., 2005; Strahler et al., 2008]. EVI utilizes
a horizontally positioned laser that emits pulses of near‐
infrared light at a wavelength of 1064nm. Pulses are emitted
at a rate of 2 kHz. Plot and stand level DBH, basal area, tree

height in addition to foliage profiles were derived from each
plot in our study sites using the EVI data.

4. Analysis

4.1. Field Data Analysis

[20] Based on the vegetation structure parameters collected
in 2003 and 2007, we examined the relationship between
aboveground biomass for each individual tree and at the plot
level for each location with height, DBH, basal area andwood
volume. Aboveground biomass for each individual tree was
calculated based onDBH‐based allometric equations and plot
level biomass was calculated as the sum of individual tree
biomass within each plot. Vegetation height was not mea-
sured for each single tree in the field; however, height was
estimated from DBH using DBH‐height allometric equations
and was evaluated using height and DBHmeasurements from
the same site.
[21] The allometric equations for biomass were chosen

from the literature where the ground data collection best
approximates the conditions in our study sites [Tritton and
Hornbeck, 1982]:

lnðAGBÞ ¼ aþ b ln D ð3Þ

where the coefficients a and b vary with species. The allo-
metric equations for height were from Albani et al. [2006]:

H ¼ 1:3þ b1k � ð1� eb2hDÞ ð4Þ

where coefficients b1h and b2h vary with plant functional
types (PFTs), which are differentiated by their leaf physiol-
ogy, allometry, mortality and dispersal. We verified that the
above allometric equation provides good estimates for tree
height for our study area by comparing tree height estimates
with the tree height estimates in 1989 (R = 0.87, RMSE =
2.3 m, for nearly 7800 trees).
4.1.1. Results for Individual Tree Species Based
Analysis
[22] Figure 2 compares the relationship between above-

ground biomass with wood volume approximated as the
product of basal area and tree height for major tree species in
New England. The analysis was separated by two groups:
conifer/softwood tree species and deciduous/hardwood tree
species. Figure 2 shows that for trees within 10 to 68 cmDBH

Figure 2. Relationship between single tree species aboveground biomass with wood volume (product of
basal area (BA) and tree height (H)) for major tree species in the northeastern United States. BA and H are
calculated with DBH ranging from 10 to 68 cm with a 2 cm increment.
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range, aboveground biomass is almost linearly related to the
wood volume except for birch species. Previous studies
on allometric equations have shown that the coefficients are
dependent on species, possibly on stand age and structure
[Pilli et al., 2006; Zianis andMencuccini, 2004]. As indicated
in equation (2), the coefficients (slopes) of the linear rela-
tionship between aboveground biomass and wood volume
are related to the wood density. Softwood and hardwood
show a large difference in wood density, resulting in two
distinguished groups as shown in Figure 2. For all hardwood
tree species in our study area, except for birch, the biomass
does not vary much between individual species. For all
softwood tree species, except for northern white‐cedar tree,
biomass estimates all group together. From this, we conclude
that the aboveground biomass and wood volume relation-
ships are vegetation type dependent. This result is consistent
with the conclusion from Chave et al. [2005] that had sug-
gested that knowing wood density improves aboveground
biomass estimates.
4.1.2. Results for Plot Level Analysis
[23] The plot level analysis was based on the two data sets

collected in 2003 and 2007. These two data sets have similar
geolocation accuracy, and topography and sampling strategy.
Data collected in 2003 were binned into 4 × 6 circular plots
with 20 m radius, the same plot size as for the 2007 data. Both
data sets have about 5 m geolocation accuracy.
[24] Figure 3 compares the relationships among plot level

aboveground biomass with various tree structure parameters
including quadratic mean DBH (DBH_qm), basal area,
quadratic mean tree height (H_qm), top 10% tree height, and
wood volume (the product of basal area and tree height) for

data collected in 2003 and 2007. It shows that plot level
aboveground biomass is related to height metrics and to mean
DBH structure parameters with root mean square error
(RMSE) ranging around 1.1–4 kg/m2 and coefficient of
determination R2 ranging from 0.4 to 0.7. However, there are
five outliers in biomass and height/DBH relationships
(Figures 3a–3d). These outliers are from the shelterwood
stand in Howland, MN, where vegetation is very sparse.
Quadratic mean of DBH (DBH_qm), quadratic mean tree
height (H_qm) and top 10% tree height were large; however,
total aboveground biomass was low in these sites.
[25] Over all structure parameters, wood volume (calcu-

lated as the product of basal area and top 10% or quadratic
mean of tree height) is the best biomass predictor when
the analysis was based on vegetation type with RMSE from
1.1 kg/m2 to 1.6 kg/m2 andR2 from 0.74 to 0.95. Conifer plots
show a better relationship (R2 = 0.95) between biomass and
wood volume than deciduous (R2 = 0.74). Overall wood
volume is a good predictor of plot level aboveground biomass
when the forest type is known. The method used in this study
is different from Chave et al. [2005] in that their study
developed a regression model to directly relate aboveground
biomass with diameter and height for each individual tree at a
plot level. Our study used basal area and top 10% tree height
at the plot level which is more closely related to lidar mea-
sured tree height. Our conclusion is consistent with theirs in
that woody density and wood volume a good estimate of
biomass and our study also indicates that differentiating at
least hardwood and softwood vegetation type and utilizing
wood volume are critical for biomass estimate.

Figure 3. Relationships between plot level aboveground biomass and different tree structure parameters
for all study plots in New England. Solid circles are for deciduous plots, and open circles are for conifer
plots.
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4.2. LVIS Data Analysis

[26] The lidar data analysis focused on examining the
physical meaning of vegetation height metrics and the link
between plot level aboveground biomass with height metrics,
vegetation cover and structure parameters combining height
and gap fraction. This analysis aids us in understanding the
error sources in lidar estimated biomass and helps us inves-
tigate how much improvement in biomass estimate we can
expect by adding additional vegetation structure parameter
compared to using height metrics alone.
4.2.1. LVIS Data Processing
[27] To extract vegetation structure parameters for each

plot from LVIS data, LVIS footprint‐level structure para-
meters within each plot were binned to obtain plot level LVIS
structure parameters. Figure 4 shows the spatial relationship
between LVIS footprint and the plot size. To extract LVIS
data for the corresponding plot, we averaged all LVIS data
occupying an area slightly larger than plot range to reduce
geolocation uncertainty. LVIS data (height and coverage)
with footprint centers located within a 5 m radius circle cen-
tered at each plot center are averaged (using quadratic mean
for height) for all the 2003 and 2007 plots (see Figure 4).
[28] Three structure parameters derived from LVIS were

used in this study: The first, RH100, calculated as the distance
of the top of vegetation returns and the peak of last Gaussian
pulse (the ground returns); the second, RH50 as the height of
medium energy occurs relative to the last ground returns
[Drake et al., 2002a]. Both height metrics are often used to
estimate aboveground biomass [Drake et al., 2002a, 2002b,
2003]; and the third, vegetation cover, was calculated from the
full lidar waveforms based on the method described below:
[29] Vegetation cover can be estimated from accumulated

lidar returns from canopy and ground. However, it is well
known that the lidar returns are affected by the canopy and
background reflectivity ratio. Based on the basic lidar equa-
tions [Ni‐Meister et al., 2001], vegetation cover can be
directly estimated from accumulated vegetation and back-
ground returns, Rv and Rg (see Figure 5 on how to obtain Rv

and Rg from waveforms), and the ratio of canopy volume

backscattering coefficient (rv) and the background reflec-
tivity (rg), rv/rg,:

C ¼ 1= 1þ �v
�g

Rg

Rv

� �
ð5Þ

[30] Accumulated vegetation and background returns, Rv

and Rg for each footprint can be easily retrieved from original
lidar energy returns. In this study we propose an approach
to estimate the reflectivity ratio, rv/rg, using accumulated
canopy and background laser returns, Rv1 and Rv2, Rg1 and
Rg2 from two adjacent footprints.
[31] The two basic vegetation lidar equations are [Ni‐

Meister et al., 2001]:

Rg ¼ J0�g ð1� CÞ
Rv ¼ J0�vC

ð6Þ

where J0 is the beam irradiance of the lidar; C is the canopy
cover. Set R′g = Rg / J0 and R′v = Rv / J0, the above equations
become:

R
0
g ¼ �gð1� CÞ

R
0
v ¼ �vC

ð7Þ

So,

R
0
g

�g þ
R

0
v

�v ¼ 1

1� C

C
¼ R

0
g

R0
v

�v
�g

ð8Þ

With the assumption of constant rv and rg from two neigh-
boring footprints, equation (8) gets �v

�g
as a function of ground

and canopy returns, Rg1 and Rg2; Rv1 and Rv2 from two
neighboring footprints:

�v ¼
R

0
g2R

0
v1 � R

0
g1R

0
v2

R
0
g2 � R

0
g1

�g ¼
R

0
g1R

0
v2 � R

0
g2R

0
v1

R
0
v2 � R

0
v1

ð9Þ

�v
�g

¼ ðR0
v1 � R

0
v2Þ

ðR0
g2 � R

0
g1Þ

¼ ðRv1 � Rv2Þ
ðRg2 � Rg1Þ

Figure 4. Spatial relationship between LVIS footprint (open
circles) and plot range (solid circles). Plot level LVIS pro-
ducts were obtained by averaging LVIS data for footprint
centers located within a 5 m radius circular centered at each
plot center.

Figure 5. Illustration of accumulated vegetation returns
(Rv) and ground returns (Rg) from a typical lidar waveform.
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This method has been evaluated and used to derive corrected
lidar waveforms and canopy gap probability profiles from
LVIS data (W. Yang et al., unpublished manuscript, 2009).
W. Yang et al. (unpublished manuscript, 2009) found that
the corrected VLIS waveforms match better with modeled
waveforms than the uncorrected ones. Their study also
demonstrated that this ratio is larger in deciduous forests sites
than in coniferous forests.
4.2.2. LVIS Data Results
[32] Figure 6 compares RH100 and in situ measured

vegetation heights calculated as mean top 10%, maximum
and quadratic mean tree height at LVIS footprint, plot and
stand scales. At the LVIS footprint level (20 m), RH100 is
described best as the maximum tree height; however, there
are a few outliers showing significant underestimation of
maximum tree height. They are likely the results that taller
tress are located near the edge of the footprint, where laser
energy is weak; therefore there is not enough backscattering

from the tree tops to record distinguishable returns [Hyde
et al., 2005]. Our result is comparable to other results by
Lefsky et al. [2001] and Hyde et al. [2005].
[33] RH100 overestimates the quadratic mean of tree

height, but compares reasonably well with top 10% tree
height at the footprint level. However, both top 10% and the
quadratic mean of tree height has much smaller variations
than RH100, partly due to averaging often leading to reduced
variations. The other reason could be that in situ tree heights
were not direct ground measurements, but were calculated
based on allometric equations and such calculation loses its
nature variation.
[34] At the plot and stand levels, RH100 and top 10%

height and quadratic mean height were all averaged values.
RH100 slightly overestimates top 10% tree height, partic-
ularly for tall trees; however, both variables show similar
spatial variations. RH100 underestimatesmaximum tree height
in most cases particularly for conifer sites. The underestimate

Figure 6. Comparison of RH100 with ground measured tree height metrics. (left) Top 10% mean tree
height, (middle) maximum tree height, and (right) quadratic mean tree height at three scales. (top) Footprint
level (0.03 ha), (middle) plot level (0.12 ha), and (bottom) stand level (∼1 ha). Solid circles are for deciduous
plots, and open circles are for conifer plots.
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is the result that RH100s at both plot and stand levels, are
averaged value and maximum tree heights are not. It appears
that crown shape influences RH100 estimates and in conifer
forests, skinny crowns often reflect too little signal to detect
the tree tops, leading to underestimation of tree height for
conifer forests. RH100 overestimates quadratic mean of tree
height. The overestimation comes from that RH100 is an
averaged value of taller trees and quadratic mean includes
also small trees.
[35] To better understand RH50, Figure 7 compares RH50

with top 10% and quadratic mean canopy height, canopy
cover and canopy volume estimated as the product of vege-
tation height (RH100) and vegetation cover. It shows that
RH50 is related well to vegetation cover, quadratic mean and
top 10% averaged vegetation height with R2 greater than 0.7
and RMSE ranging from 1.7 m to 2.0 m. However, RH50 has
the closest relationship with canopy volume (RH100* cover)
with a coefficient of determination R2 = 0.92 and RMSE =
1 m, indicating that RH50 is a better representation of canopy
volume. RH50, the height where 50% of waveform energy
occurred, is sensitive to changes in canopy foliage structure,
for which canopy height, density, cover and vertical foliage
profiles are all determining elements. The value of RH50 is
lower in forest stands with lower canopy cover, when more
energy can reach the ground [Drake et al., 2002a, 2002b].
Conversely, RH50 is increased in high canopy covered forest.
Figure 7 indicates that RH50 is about 60–70% of canopy
volume value. Additional analysis (not shown) found that
the relationship of RH50 with crown volume (calculated
based on crown size and stem density) and total foliage area
(foliage area volume density*crown volume), appears to
be quite complicated and crown shape may play a role. Our

understanding of why RH50 is more closely related to
height*cover than to crown volume or foliage area is that
RH50 is a combination of height and canopy gap fraction. A
physical model like the Geometric Optical and Radiative
Transfer (GORT) [Ni‐Meister et al., 2001, 2010; Yang et al.,
2010] is required for further analysis and the results will be
presented in a separate study.
[36] To investigate the relationships of plot level above-

ground biomass with RH100, RH50, vegetation cover and
canopy volume, Figure 8 compares aboveground biomass
with RH100, RH50, vegetation cover and the combination of
two. RH100, RH50 and vegetation cover are all good pre-
dictors of biomass. A previous study has shown RH50 is a
good predictor of aboveground biomass [Drake et al., 2002a,
2002b]. Our LVIS data analysis shows that RH100*cover
(R2 = 0.85 and RMSE = 2.4 m) and RH50*cover (R2 = 0.87
and RMSE = 2.2 m) perform similarly or even better than
RH50 (R2 = 0.84 and RMSE = 2.5m). However, Figure 8 also
indicates that in deciduous plots, lidar was not very successful
in identifying biomass variations.
[37] To understand why RH100*cover and RH50*cover

are good predictors of aboveground biomass, Figure 9 com-
pares RH100*cover and RH50*cover with wood volume
(basal area * top 10% height). It shows that both metrics
are closely related to wood volume, particularly for conifer
plots. For deciduous plots, RH100*cover and RH50*cover
seem saturated and do not change much with wood volume,
indicating that lidar might have difficulties in identifying
biomass variations in deciduous forests. This result concurs
with Nelson et al. [2007].
[38] High correlation of RH50 with RH100*cover suggests

that RH50 is directly related to canopy height and gap frac-
tion, thus wood volume. This finding indicates that bio-
mass should be better described by lidar measured height
and canopy gap fraction than height alone. Although nadir‐
looking above canopy lidar does not provide wood vol-
ume information, aboveground biomass can still be estimated
with good accuracy from lidar data with structure param-
eters that combine height and gap fraction, such as RH50,
RH100*cover and RH50*cover.

4.3. Analysis of Hemispherical Scanning
Ground‐Based Lidar Data

[39] Our ground data analysis demonstrates that wood
volume (estimated as the product of vegetation height and
basal area) is an excellent biomass predictor when knowing
forest type as hardwood/deciduous or softwood/coniferous.
However, nadir pointing lidar does not provide a direct esti-
mate of wood volume except for tree height. One approach to
estimating wood volume is to use a full‐digitizing hemi-
spherical‐scanning below‐canopy lidar like the Echidna®
validation instrument (EVI). As demonstrated by Jupp et al.
[2009] and Strahler et al. [2008], EVI provides accurate
plot level mean DBH, basal area, stem density, foliage pro-
file and tree height structure information. Therefore wood
volume can be calculated from EVI basal area and height
measurements. By using EVI‐basal area and height mea-
surements in New England to estimate wood volume and then
aboveground biomass at plot and stand levels we can and
would avoid using allometric equations to estimate above-
ground at plot and stand levels.

Figure 7. Comparison of plot level RH50 with vegetation
cover, ground quadratic mean, and top 10% height and rela-
tionship between RH50 and the product of RH100 and LVIS
vegetation cover for all study plots (solid circles for decidu-
ous plots and open circles for conifer plots) in New England.
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[40] Our first analysis is to compare EVI height with dif-
ferent field measured height metrics. A similar analysis was
conducted as Figure 6. EVI height was compared to mean top
10%, maximum and quadratic mean tree heights at plot and
stand levels (Figure 10). Similar to RH100, EVI height at both
plot and stand levels matches reasonably well with top 10%
tree height with slight overestimation. EVI height slightly
underestimates maximum tree height at both plot and stand
levels. However, the difference from LVIS RH100 is that
EVI height accuracy is less crown shape dependent as it is
upward looking and crown shape may not play a strong role
on height estimate. Similar to RH100, EVI height over-
estimates quadratic means of tree height.
[41] Further analysis includes comparison of EVI and LVIS

canopy height, and EVI DBH and basal area with field data
(see Figure 11, top). EVI‐height agrees reasonably well with
LVIS height with slightly larger LVIS height. EVI basal area
matches well with the field measurements.
[42] Finally, aboveground biomass was compared to

wood volume estimated by EVI or a fusion of EVI and LVIS
at the plot level (Figure 11, middle) and the stand level
(Figure 11, bottom). Figure 11 demonstrates that plot level
aboveground biomass is well related to wood volume par-
ticularly for conifer plots. Although with low samplings,
aboveground biomass was better estimated at the stand level
for both conifer and deciduous forests (R2 = 0.97 and RMSE=
0.3 kg/m2 for conifer stand and with R2 = 0.92 and RMSE =
1.6 kg/m2 for deciduous stand) than at the plot level. Our
analysis demonstrates that hemispherical‐scanning ground
lidar data from EVI provides high‐quality estimates of wood
volume, and has a potential to provide accurate estimates of

aboveground biomass. This analysis demonstrates the poten-
tial strength in biomass estimate at large scale using EVI.

5. Conclusions and Discussion

[43] This study analyzed both field and lidar‐based vege-
tation structure measurements collected in New England at
different scales to investigate if additional vegetation struc-
ture parameters besides height are highly related to above-
ground biomass and will improve aboveground biomass
estimate. Field data analysis shows that aboveground bio-
mass for each individual tree and at the plot level is closely
related to wood volume and wood density, depending on
vegetation type (conifer/softwood or deciduous/hardwood
forests). Wood volume at plot level is best approximated by

Figure 9. Relationships between LVIS RH100*cover and
RH50*cover with wood volume for all study plots (solid cir-
cles for deciduous plots and open circles for conifer plots) in
New England.

Figure 8. Relationships between plot level aboveground biomass with LVIS height metrics (RH100,
RH50), vegetation cover, and their combinations for all study plots (solid circles for deciduous plots and
open circles for conifer plots) in New England.
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the product of basal area and top 10% tree height. Our study
indicates that using wood volume and vegetation type rather
than tree height alone has the potential to improve biomass
estimates.
[44] This result concurs with previous allometric equation‐

based biomass studies by Pilli et al. [2006], Zianis and
Mencuccini [2004], and Chave et al. [2005]. Their studies
found that aboveground biomass is closely related to wood
volume and wood density. However, our analysis method
is different from theirs. Previous analysis calculated the
statistics based on individual trees. Our analysis calculates
the statistical tree structure parameters first and relates the
aboveground biomass with tree structure statistical param-
eters at large scales. For example, our wood volume at plot
level was approximated as the product of mean basal area
and top 10% tree height. A similar study at plot level [Chave
et al., 2005] did regression analysis to relate biomass with
DBH and height for each individual tree.
[45] Previous airborne lidar analysis found that RH50 is a

good predictor of aboveground biomass [Drake et al., 2002a,
2002b, 2003]. Our LVIS data analysis shows that structure
parameters combining canopy height and gap fraction such as
RH100*cover and RH50*cover perform similarly or even
better than RH50. High correlations between these structure
parameters with wood volume, particularly for conifer forests
explain why they are good predictors of aboveground bio-
mass. High correlation between RH50 and RH100*cover
suggests RH50 is a better predictor of biomass than RH100.
Above‐canopy lidar does not provide a direct measure of
wood volume; however, structure parameters that combine

height and gap fraction, such as RH50, RH100*cover and
RH50*cover are highly related to wood volume. Above-
ground biomass can therefore still be estimated with good
accuracy from lidar data. Finally our analysis also indicates
that lidar might not be very successful in identifying bio-
mass variations in deciduous forests, which is consistent with
discussions by Nelson et al. [2007]. Further research is nec-
essary to confirm this finding.
[46] Our field data analysis indicates that wood volume

(estimated as the product of vegetation height and basal area)
is an excellent biomass predictor especially with known
dominating forest type to be either deciduous or coniferous
forests. Forest type information can be easily extracted from
the existing land cover maps derived from optical remote
sensing data. Our study therefore implies that the fusion of
lidar and forest type information from optical remote sensing
will provide better aboveground biomass estimates than lidar
alone.
[47] Our result also demonstrates that the fully digitized

hemispherical‐scanning below‐canopy lidar, Echidna® val-
idation instrument (EVI) provides excellent wood volume
measurements, i.e., an accurate measure of aboveground
biomass, particularly at the stand level.
[48] Further, allometric equations to derive aboveground

biomass in this study were derived in New England.. These
equations can vary from site to site due to difference in soil,
climate and topography. The best approach would be using
allometric equations derived specifically for each site. How-
ever, these equations are often not available. The error
associated with using one set of allometric equations for all

Figure 10. Comparison of EVI height with field measured tree height metrics. (left) Top 10% mean
tree height, (middle) maximum tree height, and (right) quadratic mean tree height) at plot (0.12 ha) and
stand (∼1 ha) scales (solid circles for deciduous plots/stands and open circles for conifer plots/stands) in
New England.
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stands might lead to some bias in our relationship between
biomass with structure parameters. Our findings need to be
further tested in other regions.
[49] In particular, this study uses ground and lidar data

collected over flat terrain. The relationships between above-
ground biomass and vegetation structure parameters are
complicated by adding topography [Lefsky et al., 2005, 2007;
Hyde et al., 2005; Harding and Carabajal, 2005]. Surface
topography has been a known factor in aboveground biomass
production [Whittaker et al., 1974]. Uncertainties in LVIS
height metrics estimates from lidar also increase with terrain
slope [Blair et al., 2006]. Correction of slope effect on height
metrics is required to derive accurate vegetation height
structure parameters [Lefsky et al., 2005, 2007; Harding and
Carabajal, 2005; Hyde et al., 2005; Yang et al., 2010]. A
recent study in montane ecosystems indicates that above-
ground biomass is more closely related to RH75 than RH50.
As this conclusion is different from what was found byDrake
et al. [2002a, 2002b, 2003], topography might be a factor for
such a relationship. In montane regions, the wood volume
might be better related to RH75 than RH50 as found in our
study. Our future work includes assessing the relationship

between biomass and vegetation structure parameters over
sloping terrains by adding the surface topography effect in
aboveground biomass estimates from lidar.
[50] Finally, this study and previous work all indicate that

deriving height based allometric equations for aboveground
biomass estimate is possible. These types of allometric
equations will also be dependent on stand age [Ketterings
et al., 2001; Pilli et al., 2006; Zianis and Mencuccini, 2004]
and optical remote sensing information on stand age [Song
et al., 2007; Liu et al., 2008] may have to be fused with
lidar remote sensing to obtain optimal results.
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