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A B S T R A C T   

Many studies have established the strong connections between aboveground biomass and lidar height metrics; 
however, these relationships are site-specific. Field data required to derive these relationships are not readily 
available in many cases. We developed a model to estimate plot-level aboveground biomass density (AGBD) 
directly from large-footprint lidar waveform measurements. An individual tree-based aboveground biomass 
(AGB)-height allometric relationship was scaled up to the plot level using lidar-waveform sensed tree height and 
crown size distribution characteristics. The AGBD was estimated based on a waveform/foliage profile-weighted 
height-based allometric equation. The AGBD-height scaling exponent was then built on the allometric re
lationships of tree height with stem diameter and crown volume with tree height. Global vegetation structure 
data analysis demonstrated that one general model (scaling exponent ~ 1.6–1.8) works reasonably well across all 
global forest biomes except boreal forests (scaling exponent ~ 0.9). We applied the model to estimate above
ground biomass in two distinct geographic regions: temperate deciduous/conifer forests in the northeastern USA 
and a montane conifer forest in Sierra National Forest in California. Local vegetation structural data analysis 
leads to a consistent height scaling exponent for these two distinct biomes, slightly different from the global data 
analysis results. This model produced optimal AGBD estimates using the local height scaling exponent value. 
Adequate AGBD estimates with the general height scaling exponent value were also provided by our model. Our 
analysis suggests one general allometric relationship between plot-level AGBD and large-footprint lidar wave
forms. Integrating local structure allometric relationships improve the predictive accuracy of the model. Our 
model outperformed the lidar height metrics-based approach for AGBD estimates and overcame the biomass 
underestimation problem using height metrics for high biomass regions. This model could potentially serve as a 
general and robust model for monitoring forest carbon stocks using large-footprint lidar waveform measurements 
such as the Global Ecosystem Dynamics Investigation (GEDI) mission at the continental and global scales. The 
model could be a framework for integrating a demography-based terrestrial ecosystem model and GEDI global 
mission measurements to improve global carbon stock and flux estimates.   

1. Introduction 

Forests account for about 92% of the terrestrial vegetation carbon 
pool (https://www.globalchange.gov/) (Goldstein et al., 2020) and 
store up to 80% of all the biomass on Earth (Bar-On et al., 2018; Gold
stein et al., 2020; Reichstein and Carvalhais, 2019). Forest aboveground 
biomass (AGB) is a significant contributor to total terrestrial carbon 
storage. Accurate measurements of forest aboveground biomass over 
large spatial scales are crucial for quantifying terrestrial carbon ex
changes and are critical for successfully implementing climate change 

mitigation policies and sustainable forest management. Despite their 
importance, significant uncertainties remain concerning terrestrial car
bon budgets, limiting the ability of current science to quantify their roles 
and predict their trajectory in the global carbon cycle (Fisher and Koven, 
2020; Reichstein and Carvalhais, 2019). 

It is neither practical nor cost-effective to collect field aboveground 
biomass data for large regions. Satellite observations with dense sam
pling in space and time are essential to characterize the heterogeneity of 
ecosystem structure and estimate terrestrial ecosystem carbon storage at 
large scales (Schimel et al., 2015). Lidar directly measures the vertical 
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structure of vegetation by providing vertical density profiles (wave 
forms) of vegetation elements (stems, leaves) that reflect back laser 
pulses. Such data have excellent potential to provide large-scale esti
mates of forest carbon storage (Schimel et al., 2015; Wulder et al., 
2012). Various extensive spatial vegetation lidar data have become 
more widely available, including airborne discrete-return lidar, airborne 
waveform, satellite waveform lidar, and ground-based lidar (Coops 
et al., 2021). The Global Ecosystem Dynamics Investigation (GEDI) 
mission collects high-quality measurements of vertical forest structure 
in temperate and tropical forests between 51.6

◦

N and 51.6
◦

S latitudes 
at 25 m footprint resolution (Dubayah et al., 2020). GEDI will provide 
over 10 billion waveforms during its four-year lifetime. A multitude of 
high-resolution GEDI measurements will provide better quantifications 
of canopy height, vertical foliage profiles, and aboveground biomass at 
global and continental scales. Lidar has much fewer saturation problems 
than conventional optical remote sensing and radar technology and is 
recognized as a state-of-the-art remote sensing technology for mapping 
aboveground biomass (Ni-Meister, 2015). 

Various waveform lidar sensors at different footprint sizes provide 
three-dimensional vegetation structure and aboveground biomass 
measurements at different spatial scales. Many studies have successfully 
used spaceborne and airborne full-waveform lidar data to estimate 
aboveground biomass characteristics across various biomes. For 
example, the airborne Land, Vegetation, and Ice Sensor (LVIS) wave
form lidar has been used to estimate aboveground biomass density 
(AGBD, total AGB per unit area) in conifer forests in the Cascade 
Mountain Range in Oregon and Washington, USA (Lefsky et al., 2005) 
and Sierra National Forest, California, USA (Swatantran et al., 2011); 
temperate deciduous forests in Annapolis, Maryland, USA (Lefsky et al., 
1999) and the White Mountains, New Hampshire, USA (Anderson et al., 
2006; Anderson et al., 2008; Ni-Meister et al., 2010a), tropical forests in 
La Selva, Costa Rica (Drake et al., 2002; Dubayah et al., 2010). The 
spaceborne waveform-based Geosciences Laser Altimeter System 
(GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) at 
approximately 70 m footprint scale has been employed to estimate 
aboveground biomass in a conifer forest in Oregon and a deciduous 
forest in Tennessee, the USA, and tropical forests in Santarem, in the 
state of Para, Brazil (Lefsky et al., 2005). GEDI and ICESat-2 data have 
been used to estimate aboveground biomass in the Western USA (Dun
canson et al., 2020; Silva et al., 2021). 

The most common approach to estimating aboveground biomass 
from large-footprint waveform lidar is using lidar height metrics 
calculated based on waveform measurements. Aboveground biomass 
density is often estimated as a linear regression of lidar height metrics, i. 
e., RH100, RH75, RH50, and RH25, where RHX is defined as the height 
relative to the ground (denoted as “RH”) at which there is X% of the 
accumulated total waveform energy from the last detectable return. 
Recent LVIS and GEDI height metrics include more RH values: RH10 to 
RH95 at 5% intervals, then RH96, RH97, RH98, RH99, and finally 
RH100. Lidar waveform directly links to vegetation structure (Ni- 
Meister et al., 2001; Ni-Meister et al., 2018). Each lidar height metric 
calculated from full waveforms represents specific vegetation structure 
characteristics associated with aboveground biomass. For example, 
RH100 is a good predictor of aboveground biomass in dense forests in 
the northeastern USA. However, the model fails to predict aboveground 
biomass in a newly-harvested forest (Ni-Meister et al., 2010a). Gener
ally, RH50 is better related to aboveground biomass than RH 100 
because the latter measures the height of the canopy top; RH50 includes 
both canopy height and canopy density, and it has been widely used to 
estimate aboveground biomass in many forests. However, RH75 was the 
best predictor for aboveground biomass in Sierra National Forest, CA, 
USA (Swatantran et al., 2011). RH80 works best in south-central Sweden 
(Saarela et al., 2020), and (Sheridan et al., 2014) used RH90 for Pacific 
Northwest. Multiple variable regression analysis is often employed to 
obtain the best results and identify the optimal relationship between 
aboveground biomass and different lidar height metrics (Choi et al., 

2013; Margolis et al., 2015; Nelson, 2010; Nelson et al., 2017). Many 
lidar biomass models are often derived by empirical regression analysis 
and calibrated to site-specific fitting parameters. More than 50 different 
lidar parameters have been used to identify optimal parameters for 
estimating AGBD (Nelson et al., 2017). However, these parameters and 
coefficients used in the biomass estimates are site-specific, and field 
aboveground biomass data are required for each study site to develop 
the optimal aboveground biomass models. 

Applying this height metrics-based regression approach at large or 
global scales is difficult without a dense ground validation network. 
Building such a dense global network is either too expensive or 
impractical. Ultimately, to advance beyond regressions on RH metrics, 
what is needed is a generalizable understanding of the fundamental 
relationship between aboveground biomass and full lidar waveform 
measurements. This study aims to develop a general model to fully 
describe the vital connection between aboveground biomass and lidar 
waveform measurements. 

This study takes the following approach: The canopy community is 
composed of multi-cohorts that are ensembles of identical individual 
trees. For individual trees, the woody stem is the main AGB component, 
which can be calculated from the stem geometry (diameter, taper factor, 
and height) and the wood density. At the plot level, the total AGB derives 
from the sum of the population of trees of different cohorts that form the 
canopy community. Lidar waveform samples the vertical profile of 
density of canopy elements, which are an integration of that community; 
each peak of the waveforms reflects the crown sizes of the trees and their 
densities of one cohort in the vegetation community. Therefore, it 
should be possible to derive AGB based on individual-level tree allom
etry (relations of lidar observable height to stem diameter and crown 
size) and on population density as reflected in the lidar waveform caused 
by crown densities for each cohort. We link individual tree geometry 
allometry with tree biomass and lidar waveform with both height 
stratification of a canopy and density of tree crowns for each cohort. The 
challenge then is to 1) determine the appropriate allometric relations at 
the individual level and globally relevant parameterizations, and 2) to 
incorporate the lidar waveform as a convolution of tree density and 
crown sizes. 

Many studies have investigated individual tree-level allometric re
lationships of aboveground biomass with tree height and crown size 
structure characteristics. A strong relationship between aboveground 
biomass and tree height exists due to the power-law scaling relationship 
between tree height and stem diameter (Chave et al., 2014; Feldpausch 
et al., 2011; Feldpausch et al., 2012; Henry et al., 2010; Ploton et al., 
2015). However, power-law relationships vary with species, climate, 
and stand age, failing to account for the asymptotic nature of faster tree 
height growth in young trees than in mature trees (Chave et al., 2014; 
Jucker et al., 2017). Some studies found that stem diameter and 
aboveground biomass correlate well with crown width even in large 
trees (Goodman et al., 2014; Henry et al., 2010; Ploton et al., 2015). 
Jucker et al. (2017) developed general allometric models to estimate 
stem diameter and aboveground biomass from tree height and crown 
diameter using a global vegetation structure database. These findings 
support the idea that both stem diameter and crown size affect scaling of 
AGB with height beyond a simple power law, where height distribution 
could potentially be derived from small-footprint lidar measurements. 
However, all these studies focused on the individual tree level. 

Plot-level tree height size distribution estimates have been made 
from small footprint lidar measurements with great success (Fischer 
et al., 2020; Spriggs et al., 2017; Taubert et al., 2021). In this study, we 
developed a model to estimate plot-level AGBD directly using large- 
footprint full-waveform lidar measurements. Our aboveground 
biomass model is based on tree height stratification measured by lidar 
waveforms and the allometric relationships among height, stem diam
eter, and crown size, where crown size convolved with the density of 
trees at each height level result in the waveform bulge. This model is 
general enough to provide reasonable aboveground biomass estimates 
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for different forest biomes and geographic regions with limited field 
data. This type of model reduces the site-specific calibration effort for 
aboveground biomass estimates. 

The text structure below is arranged as follows: the general AGBD 
model and the model generality assessment using a global vegetation 
structure dataset are demonstrated in Section 2. The test sites and 
datasets for model evaluation are described in Section 3. The model 
performance in our test sites is explained in Section 4. Finally, the results 
and conclusions are discussed and summarized in Sections 5 and 6. 

2. The lidar waveform-based aboveground biomass model 

We started at the individual tree scale and first developed a height- 
based aboveground biomass allometric equation for individual trees. 
Then, we expanded the height-based aboveground biomass allometric 
equation to plot-level by summing the biomass of all the trees within 
each plot. Lastly, we linked the plot-level biomass estimates with the 
waveforms. 

2.1. Height-based biomass allometric equation at the individual tree level 

A general model of the total aboveground biomass of a tree (kg) is 
expressed as the product of wood volume and wood specific gravity and 
a tapering factor (Chave et al., 2005; Chave et al., 2014): 

AGBtree =
1
10

F
(

ρ π
4

D2 H
)k

(1)  

where H is tree height in m, D is the stem diameter at breast height in cm, 
ρ is the wood specific gravity (oven-dry wood over green volume in g/ 
cm3), k < 1, k = 0.976 was the best fit for measurement for tropical 
forest (Chave et al., 2014). F is the tree taper factor, with F = 0.6 for 
broadleaf species and F = 0.333 for a perfect conical shape (Chave et al., 
2005). 

Stem diameter, D, in Eq. (1) is related to height, H, through their 
allometric relationship: 

H = b Dβ (2)  

where H is in m and D is in cm, b is the coefficient, and β is the allometric 
scaling exponent. The relationship between tree height and stem 
diameter varies with species and climate conditions (Chave et al., 2014). 
Niklas (1994) found β = 0.535; Ketterings et al. (2001a) estimated an 
average β = 0.62 from their field data. Zianis and Mencuccini (2004) 
used a fractal geometry model, in conjunction with field data analysis, 
and found the scaling exponent β is between 0 and 1, but varies with tree 
height/size (or stand age), concurring with the findings by Ketterings 
et al. (2001b). Pilli et al. (2006) concluded β appeared to be related to 
tree stage but independent of species and site, using forty-nine datasets 
of different species, sites, and stand ages. A recent analysis of the Forest 
Inventory and Analysis (FIA) data revealed that β varies with species, 
tree height, and geographic conditions (Duncanson et al., 2015). Jucker 
et al. (2017) found a single tree height and stem diameter allometric 
function to estimate stem diameter without introducing systematic bias 
for different forest biomes. Incorporating different scaling relationships 
among forest types, biogeographic regions, and functional groups hel
ped improve the predictive accuracy of the model (Shenkin et al., 2020). 

By converting from the diameter to height through their relationship 
in Eq. (1) and approximating k = 1 (Chave et al., 2014), we solved for 
the individual tree aboveground biomass (AGBtree) allometric equation 
as a function solely of height: 

AGBtree =
π
40

b− 2
β F ρ H

(

1+2
β

)

(3) 

Height-based AGB equations are not widely used because tree height 
is not as frequently measured as tree stem diameter. However, (Agee, 

1981) found that the allometric scaling exponent, 1+ 2
β, ranged from 2.2 

to 2.7 for conifer forests in the Pacific Northwest, USA, and that tree 
height was usually better related to aboveground biomass than stem 
diameter. Lidar can measure tree height, but the relation to AGB needs 
further refinement, which we present here. 

2.2. The lidar waveform based biomass allometric equation at the plot 
level 

Vegetation canopy layers are comprised of cohorts of plants that are 
ensembles of identical individuals. Assume the canopy layer has n co
horts, for the ith cohort, height ranges zi-1 < z < zi, zi-1 and zi are lower 
bound and upper bound heights of ith cohort, and z0 = 0 at the ground 
for the near ground cohort number. The ith cohort has ni trees in it, ni =

λ(zi-1) - λ(zi), λ(zi) is the accumulated tree count density from the canopy 
top to tree height zi. If the height of the kth tree in ith cohort is zik, then 
aboveground biomass density at the plot level is the summation of 
biomass for all trees from all cohorts within a plot, described as follows, 

AGBD =
π
40

b− 2
β F ρ

∑n

i=1

∑ni

k=1
z

(

1+2
β

)

ik (4) 

Assuming the similar plant function type, the same allometric re
lationships, and constant wood specific gravity ρ, and tapering factor F, 
with a plot, the continuous form of Eq. (4) is, 

AGBD =
π
40

b− 2
β F ρ

∑n

i=1

∫ zi

zi− 1

−
dλ(z)

dz
z

(

1+2
β

)

dz (5)  

where λ(z) is the accumulated tree count density from the canopy top to 
tree height z. dλ(z)

dz is the tree count density per unit height interval (1/ 
m3), i.e., tree height distribution at different height intervals. The inte
gration goes from the lower bound, zi-1, to the upper bound of the can
opy, zi, for ith cohort resulting in a negative sign dλ(z)

dz . Eq. (5) implies that 
tree height and its distribution are the most significant variables for 
aboveground biomass density. 

Large footprint lidar waveforms record backscattering energy in
tensity at each height interval and are directly affected by the vertical 
and horizontal vegetation structure (Ni-Meister et al., 2001; Ni-Meister 
et al., 2018). As demonstrated in previous empirical studies, the strong 
relationships of aboveground biomass with height metrics directly 
derived from lidar waveforms suggest a strong link between lidar 
waveforms and aboveground biomass. Horizontally, at each height in
terval, strong photon returns imply dense tree counts or large tree 
crowns if not dense, and large foliage volume density at that height 
level. Vertically, taller trees measured by lidar are associated with larger 
aboveground biomass and vice versa. Thus the vertical distributions of 
tree height and crown size, the key variables controlling aboveground 
biomass are directly measured by lidar waveforms. We developed an 
approach to link lidar waveforms with tree height and size distributions 
and plot-level aboveground biomass density. 

The geometric optical and canopy radiative (GORT) model provides 
a fundamental basis for linking lidar waveforms with plot-level above
ground biomass. GORT successfully simulates canopy vegetation lidar 
waveforms as a function of laser pointing angle and vegetation structure 
parameters, including canopy crown size, vegetation height, height 
variation, vegetation density, foliage volume density, and leaf and 
background reflectivity coefficient ratio (Ni-Meister et al., 2001; Ni- 
Meister et al., 2018). The GORT modeled waveforms have been fully 
evaluated in single-layered and multilayered (multi-cohorts) conifer and 
deciduous forests using LVIS measurements (Ni-Meister et al., 2018). 
Lidar waveforms and vegetation structure characteristics are directly 
linked by canopy gap probability, which is defined as the probability of 
light penetrating vegetation without hitting any canopy element in the 
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GORT model. For a natural forest stand, assuming that tree crowns are 
randomly distributed in space, nadir canopy gap probability at height z, 
(P(0,z)), can be expressed as follows (Ni-Meister et al., 2010b; Yang 
et al., 2010): 

P(0, z) = e− GLe(z) (6)  

where G is a parameter describing leaf orientation distribution, Le(z) is 
the cumulative effective leaf area index from the canopy top to height z, 
which is a product of the clumping factor and accumulative leaf area 
index, 

Le(z) = γ Fa Vc,i λ(z) = −
ln(P(0, z)

G
(7)  

where γ, the clumping factor varies with tree structure characteristics (e. 
g., shape, size, tree count density, and within-crown foliage density) and 
light incident angle but is constant vertically (Ni-Meister et al., 2010b), 
Fa is the foliage area volume density (1/m3), Vc, i is the crown volume for 
trees in the ith cohort, λ(z) (1/m2) is the accumulative tree count density 
from the top of the canopy to height, z. Assuming lidar waveform 
samples a multi-cohort (multi-layer) canopy, each peak in the waveform 
corresponds to one cohort of the canopy. Each cohort is defined as a 
canopy layer with a similar tree crown size. For one cohort (one layer) 
canopy for our test sites, waveforms and derived foliage profiles corre
spond to tree count density profiles as shown in Figs. 4 and 5 (Section 
4.2). For a multi-cohort (multi-layer) canopy, each peak in the wave
form corresponds to total crown volume for one cohort of the canopy. 
Assume a constant crown volume Vc, i for each cohort, i and a constant 
foliage area volume density for the whole canopy, then dLe(z)

dz is, 

dLe(z)
dz

= γ Fa Vc,i
dλ(z)

dz
= −

dln(P(0, z) )
G • dz

(8) 

Ni-Meister et al. (2001) defined, dln(P(0,z) )
dz = Fapp(z) – apparent foliage 

profile. Eq. (8) can be written as follows: 

−
dλ(z)

dz
=

1
G γ Fa Vc,i

dln(P(0, z) )
dz

=
Fapp(z)

G γ Fa Vc,i
(9) 

To correct the impact of multi-cohort canopies on crown size dif
ference, crown volume, Vc, i varies with cohorts. Cohorts with taller trees 
correspond to larger tree volumes. Assume the same allometric re
lationships within the canopy, we constrain crown volume with cohort 
tree height, Hi only (Shenkin et al. 2020): 

Vc,i = a H∝
i (10) 

α is the crown volume and tree height scaling exponent, and a is the 
coefficient. We approximate cohort tree height, Hi by height z in each 
cohort. At the plot level, parameters such as leaf orientation factor G, 
clumping factor, γ, and foliage area volume density Fa are independent 
of height and assumed to be constant within a plot. Replacing - dλ(z)

dz in Eq. 
(5) by Eq. (9) results in the relationship of the aboveground biomass 
density at plot level with the lidar waveform as follows, 

AGBD =
π
40

b− 2
β

F ρ
G γ Fa

∫ zn

z0

dln(P(0, z) )
dz

z(1+2
β)

a zα dz (11) 

z0 is the lower bound of the lowest cohort and zn is the upper bound 
of highest cohort (top of canopy). Eq. (12) can be simplified as follows, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

AGBD = kFP BIFP

kFP =
π
40

b− 2
β F ρ

a G γ Fa

BIFP =

∫ zn

0

dln(P(0, z) )
dz

z

(

1+2
β

)

− ∝
dz

(12) 

BIFP in Eq. (12) refers to the foliage profile-based biomass index. It is 

an integral from the bottom to the top of the canopy layer of the product 
of an apparent foliage profile and a power function of tree height. 
Canopy gap probability, P(0,z), thus dln(P(0,z) )

dz can be directly derived 
from lidar waveforms (Ni-Meister et al., 2018). kFP is the coefficient of 
the AGBD and foliage profile-based biomass index relationship, which 
depends on tree taper coefficient, F, wood specific gravity ρ, leaf 
orientation G, clumping factor γ, and foliage area volume density Fa. 

We sought an index directly related to the waveforms to simplify the 
calculation above. d(P(0,z) )dz is the waveform and dln(P(0,z) )

dz = 1
P(0,z)

d(P(0,z) )
dz . 

The difference between d(P(0,z) )
dz and dln(P(0,z) )

dz is a factor, 1
P(0,z) , at each 

height level. We approximated the integrated effect of 1
P(0,z) by the 

averaged canopy gap probability at the top and beneath the canopy, 
Pgap, the biomass index can be directly calculated from the waveforms. 
The aboveground biomass can be estimated as follows, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

AGBD = kWF BIWF

kWF =
π
40

b− 2
β F ρ

a Pgap G γ Fa

BIWF =

∫ zn

z0

d(P(0, z) )
dz

z

(

1+2
β

)

− ∝
dz

(13) 

Eq. (13) indicates that the aboveground biomass can be directly 
calculated from the waveforms. BIWF is called waveform-based biomass 
index. The coefficient, kWF, in Eq. (13) is different from the foliage 
profile-based, kFP, in Eq. (12) by a factor of averaged canopy gap 
probability, Pgap. Eqs. (12) and (13) demonstrate that aboveground 
biomass at plot level is directly related to biomass index, kWF and kFP are 
coefficients of the AGBD and waveform-based and foliage-based biomass 
index relationships respectively, they are functions of tree taper, wood 
density, leaf orientation, foliage area per crown, and averaged canopy 
gap probability. Parameters, such as tree taper, wood density, and leaf 
orientation, are functions of plant functional types. Foliage volume 
density and averaged canopy gap probability vary with stand age and 
geographic region. All of these parameters are assumed to be constant 
vertically within each plot. 

The aboveground biomass density model laid out in Eqs. (12) and 
(13) illustrate that plot-level aboveground biomass density is linearly 
related to a biomass index, a waveform/foliage profile-weighted height 
power functions. Waveforms are directly linked to tree height and size 
distributions. A waveform is a suitable indicator of tree height and tree 
size distribution within each footprint. In the model, the scaling expo
nent, 1+ 2

β − ∝, depends on tree height and diameter allometric scaling 
exponent(β) and crown volume and tree height allometric scaling 
exponent (∝). Biomass indices have the dominant structural parameters 
directly associated with above-ground biomass. 

Biomass index is a significant variable influencing AGBD estimates. 
However, AGBD is also affected by other structural parameters in the 
coefficient term, and they may vary with stand age, tree density, and 
species. The main focus of this study is on assessing how biomass indices 
are related to aboveground biomass density and how the relationships 
vary across large geographic regions with different ecosystem structural 
characteristics. 

2.3. Assessment of the model generality 

In Eqs. (12) and (13), the scaling exponent, 1 + 2
β − ∝ depends on tree 

height - stem diameter scaling exponent (β) and the crown volume - tree 
height scaling exponent (α). The variability of 1 + 2

β − ∝ determines the 
generality of this model. We adopted a global database of 108,753 tree 
measurements of stem diameter, height, and crown diameter to assess 
the generalization of the model through examining the variations of all 
the scaling exponents (β, α, and 1+ 2

β − ∝) for different forest biomes. 
With available tree height, stem diameter, and horizontal crown 
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diameter measurements, we analyzed the allometric relationships of a) 
tree height with stem diameter, b) horizontal crown radius with tree 
height, and c) crown volume with tree height (Fig. 1). Tree height and 
stem diameter relationship allow us to assess the variability of β. To 
investigate the allometric relationship of crown volume with tree height 
α, we estimated crown volume using horizontal crown size and tree 
height measurements Assuming an ellipsoid tree crown shape, the crown 
volumes were computed based on the mathematical relationship of 
ellipsoid crown volume with the horizontal crown radius (half of the 
crown diameter) and the vertical crown radius (half of the crown depth 
which was approximated as half the tree height (Ishii et al., 2003; Sillett 
et al., 2020)). We calculated the coefficient of determination (R2), Root 

Mean Square Error (RMSE), and normalized RMSE by the mean of the 
predicted variables for all the analyses. 

Tree height and stem diameter show a significant allometric rela
tionship with R2 ranging from 0.68 to 0.84. However, the woodland and 
savanna biome has R2 = 0.56, RMSE = 3.2–5 m, and NRMSE =
0.24–0.59, making it the biome with the largest NRMSE and the largest 
uncertainty of the height and stem diameter relationship. The scaling 
exponent values are relatively uniform across different biomes, ranging 
from 0.58 (temperate mixed forests) to 0.75 (woodland and savanna). 
Crown radius and height show strong allometric relationships with R2 =

0.41–0.57, RMSE = 0.55–1.46 m, and NRMSE = 0.36–0.53, with trop
ical forest, woodland, and savanna biomes the most significant NRMSE 

Fig. 1. Allometric scaling relationships of tree height (H) with stem diameter (D) (first column), crown radius (Rc) with tree height (H) (second column), and crown 
volume (Vc) with tree height (H) (last column) for different forest biomes. The lower right corner of each subplot: The H and D scaling exponent, β and Vc and H 
scaling exponent, ∝ and associated statistics. Upper left corner of the third column: the resulting AGBD and height scaling exponent, 1 + 2

β − ∝ for each biome. 
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values. The allometric relationships between volume with tree height 
are significant, with R2 = 0.7–0.79, RMSE = 42–754 m3, and NRMSE =
0.82–2.27. The crown volume - tree height scaling exponent varies 
among forest biomes (2.05–2.88). These values range from highest to 
least in boreal forests, temperate mixed forests, tropical forests, and 
temperate coniferous forests, with the least in woodland and savanna. 
Based on the β and α values, the resulting AGB and height scaling 
exponent, 1 + 2

β − ∝, in Eqs. (12) and (13) are relatively constant 
(1.6–1.8) for all forest biomes except boreal forests (0.9). This result 
suggests that the AGBD and height scaling exponent in Eqs. (12) and 
(13) are relatively constant across all forest biomes, except boreal for
ests. This analysis suggests that one general biomass model can be 
applied to different forest biomes except for boreal forests at large scales. 
The local variations of β and α values directly lead to local variations in 
1+ 2

β − ∝. It is also essential to explore the local variability of the AGBD 
and height scaling exponent. 

3. Initial model performance assessment 

We selected two forest biomes with distinct forest structures and 
geographic regions to evaluate the model’s performance. We used LVIS 
full-waveform measurements collected in these regions to calculate 
aboveground biomass indices and compared these indices with field 
measured aboveground biomass. We could not model the exact AGBD 
due to limited knowledge of the coefficients (kFP and kWF) in the model. 
The following sections provide a detailed description of the study sites, 
data processing, and the assessment results. 

3.1. Test sites 

Our test sites were temperate deciduous/conifer forests in New En
gland (NE) and montane conifer forests in the Sierra National Forest in 
California (CA) (Fig. 2). These two biomes have different climates, 
topography, different forest stand ages, and tree species composition. 

The NE sites comprised three intensive ecological study areas: Har
vard Forest (HF) in Massachusetts, Bartlett Experimental Forest (BEF) in 
the White Mountain region, New Hampshire, and Ecosystem Research 
Forest in Howland, Maine. Harvard Forest is located in the transition 
zone of hardwoods-white pine-hemlock. The dominant species are red 
maple (Acer rubrum), red oak (Quercus rubra), white birch (B. papyrifera), 
yellow birch (Betula allleghaniensis), beech (Fagus grandifolia), white pine 

(Pinus strobus), and hemlock (Tsuga canadensis). BEF in NH was estab
lished to study secondary deciduous and coniferous forest dynamics and 
ecology. The primary tree species in this area were American beech 
(Fagus grandifolia), red maple (Acer rubrum), eastern hemlock (Tsuga 
canadensis), sugar maple (Acer saccharum), yellow birch (Betula alle
ghaniensis), paper birch (Betula papyrifera), red spruce (Picea rubens), and 
balsam fir (Abies balsamea), with some localized small stands of eastern 
white pine (Pinus strobus). The Forest Ecosystem Research site in How
land, ME, was located within the Northern Experimental Forest of the 
International Paper Co. The site was an assemblage of small plantations, 
multi-generation clearings, and sizable natural forest stands. The stands 
were mixed hemlock (Tsuga), spruce (Picea), fir (Abies), aspen (Populus), 
and birch (Betula) species. 

The CA study site in the Sierra National Forest (37◦00′N, 119◦10′W) 
were on the western slope of central Sierra Nevada in CA, USA. The site 
has a Mediterranean climate with hilly slopes. Elevations ranged from 
853 to 2743 m. The dominant tree species in this region are red fir (Abies 
magnifica), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), 
and California black oak (Quercus kellogi). 

3.2. Field data and data processing 

Datasets used in this study included vegetation structure field data 
collected in 2003, 2007, and 2008. A total of 73 plots were sampled, 48 
in New England and 25 in Sierra Forest. 

Two field datasets were collected in New England, one in 2007 and 
one in 2003. The 2007 dataset includes tree data collected in 28 plots at 
three forest sites in New England: Harvard Forest in MA, Bartlett 
Experimental Forest, NH, and Howland Ecosystem Research Forest, ME. 
Two stands were selected for each site, in a total of six stands, named 
Hardwood and Hemlock from Harvard Forest, MA; B2 and C2 from 
Bartlett Experimental Forest, NH and Tower and Shelterwood from 
Howland Ecosystem Research Forest, ME (Fig. 2). Each stand comprises 
five circular plots), ranging from 30 to 50 m with a center plot (CT) and 
four corner plots (NE, NW, SE, and SW) in between. One exception was 
the Tower stand in Howland, with only three plots (CT, NO, and SO) 
(Fig. 2). Each plot was circular with a 25 m radius for the Harvard 
Hardwood stand, MA, and 20 m for the rest of the stands. For all six 
stands, half (Harvard Hemlock in the Harvard Forest, and Tower and 
Shelterwood in the Howland Forest) were dominated by conifer trees, 
and the other half (Harvard Hardwood stand and both B2 and C2 stands 
in Bartlett Forest) by deciduous trees. Species information and trunk 

Fig. 2. Locations of test sites - The New England (NE) sites are Harvard Forest, MA, Bartlett Experimental Forest, NH, and the Forest Ecosystem Research site in 
Howland, ME. Two forest stands were selected for each NE site, with six stands in total; and each forest stand encompasses five (only three for the Howland tower 
stand) 20 m- or 25 m-circular radius plots with additional 20 plots extracted from the stem map data collected in 2003 in Howland, ME. The CA site in the Sierra 
Nevada includes 25 33 m × 33 m square plots. 
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diameters were recorded for each live stem, excluding stems with a 
diameter at breast height (DBH) < 10 cm. We measured tree heights and 
horizontal crown radii for the selected trees. Additionally, a complete 
stand map was assembled at the Forest Ecosystem Research site in 
Howland, ME, in 2003 (see Fig. 2 for the locations of the stem map area). 
We extracted 20 circular plots with a 20-m radius to be comparable with 
the other field data. In combination with the 2007 and 2003 datasets, 48 
plots from NE sites were used in this study. 

The CA data were collected in 2008, similarly to the NE sites. 
Twenty-five one-hectare stands were selected. Each stand was divided 
into nine (three × three) 33 m × 33 m square plots. Species information, 
trunk diameter, and tree height were collected for all live stems, 
excluding stem diameter D < 10 cm. No single crown radius was 
measured for the CA site. We used the data collected in the center plots 
for this study due to the lack of height measurements in other plots. 

We estimated the aboveground biomass for each tree using species- 
specific allometric equations and then aggregated them into the plot 
level. We chose allometric equations to best approximate local condi
tions. The aboveground biomass of the NE sites was calculated based on 
DBH-biomass allometric equations (Tritton and Hornbeck, 1982). For 
the CA site, we used the allometric equations of AGB based on both DBH 
and tree height, developed by the United States Department of Agri
culture (USDA) Forest Service (Waddell and Hiserote, 2005). Tree 
heights were calculated for the NE sites. 

3.3. LVIS data and LVIS data processing 

The LVIS flew over the NE sites in 2009 and the CA site in 2008. LVIS, 
a GEDI airborne sensor, is an airborne laser altimeter system emitting 
laser energy at the 1064 nm wavelength at a footprint size of 20 or 25 m. 
Both datasets have an above 0–5◦ field of view and a footprint size of 20 
m. The LVIS and field data for the CA site were collected in the same year 
(2008). However, LVIS and the field data share two-year (2009 vs. 2007) 
and six-year (2009 vs. 2003) gaps for NE sites. Considerable variation in 
the relationship between field data and LVIS data in NE sites could be 
caused by a significant time lap. 

To extract LVIS data for the corresponding plots, we used LVIS data 
with footprint centers located within a 25 m radius circular area from 
each plot center so that the selected LVIS observation could occupy an 
area slightly larger than the plot range to reduce geolocation uncertainty 
(Ni-Meister et al., 2010a). We normalized each waveform in each plot 
first, and then extracted canopy gap probability and apparent foliage 
density profiles using the approach presented in (Ni-Meister et al., 
2001), which provided direct inputs for biomass index calculation. 

3.4. Calculating biomass indices and comparing them with field AGBD 

We first calculated both waveform-based and foliage-based biomass 
indices based on Eqs. (12) and (13). We then aggregated footprint-level 
biomass indices into the plot level through arithmetic averaging. We 
adopted different height scaling exponent values, ranging between 1.0 
and 3.0. Plot-level biomass indices were compared with field-measured 
AGBD in NE and CA sites. Lidar height metrics (RH 75 and RH50) were 
compared with field-measured AGBD. A linear regression of RH100, 
RH75, and RH50 was developed to estimate AGBD. 

4. Evaluation results 

This section presents a detailed analysis to better understand the 
model and its model performance. We first compared the traits of 
aboveground biomass, tree cover, tree height, and topographic condi
tions in these two biomes to understand the different vegetation struc
ture characteristics in our sites. Next, as we discussed before, a 
waveform is a good indicator of tree height and size distribution. We 
examined the relationships between waveforms and tree height distri
bution patterns for both the NE and CA sites. Due to the lack of data, we 

could not add crown size to this analysis. We expect that both sites are 
one cohort (one layer) canopy, the tree size does not vary so much 
within each plot. Next, we attempted to extract the height scaling 
exponent in the model based on available field-measured vegetation 
structural data from NE sites. We used height and AGB measurements to 
derive and evaluate the height scaling exponent estimation for both the 
NE and CA sites. Lastly, we discussed our biomass indices evaluation 
results. 

4.1. Comparison of different forest stand conditions 

The whisker plots of the plot-level AGBD, vegetation cover, 
maximum vegetation height (RH100), and surface topography (slope) 
(Fig. 3) illustrate the significant differences in vegetation structure 
characteristics and environmental conditions between the NE and CA 
sites. Vegetation cover (1 - Pgap), where Pgap calculated using LVIS data 
indicates forest density. RH100, directly extracted from the LVIS data 
product, may be linked to the maximum vegetation height within each 
plot. Vegetation in the NE sites was relatively uniform. AGBD (first and 
third quantiles) for the NE sites ranged from roughly 200–300 Mg/ha 
with minimal variation. Most NE sites had full canopy cover (> 90%), 
but maximum tree heights for each plot varied 20–30 m. All the NE sites 
were flat, with a slope < 30. The NE sites were dense and uniform forests, 
with high canopy cover and minimal variations in AGBD. 

In contrast to the NE sites, the CA site was composed of a complex 
forest structure with significant canopy cover and tree height variations. 
AGBD varied from 100 to 1500 Mg/ha. The Giant Sequoia plot had an 
AGBD >1500 Mg/ha, but some plots were very sparse, with AGBD <100 
Mg/ha. Some plots were multi-layer canopies with 70–80 m in height 
and some small trees underneath. Vegetation was sparse for most CA 
plots; vegetation cover ranged from 20 to 80%, with a median of 45%. 
The maximum height for each plot in the CA site varied from 20 to 80 m. 
The slope of the CA site varied significantly, from 3.40 to 24.40, with an 
average slope of 9.60. 

4.2. Relationship between lidar waveforms and tree height distribution 

To demonstrate the relationships of waveforms with height distri
bution, Fig. 4 illustrates the similarities between tree height distribution 
and the corresponding waveforms and vertical foliage profile for the 28 
NE plots sampled in 2007. The 20 plots of the 2003 stem map had a 
vegetation structure similar to the Tower stand and were not included 
here. As discussed before, not all trees had tree height measurements. 
The tree heights displayed here were calculated based on a plant func
tional type (PFT) and DBH and height allometric equations (Albani 
et al., 2006). These heights match the field measured tree heights 
adequately (Fig. 6). In Fig. 4, the tree height distribution refers to the 
number of trees per 1 m vertical grid at the corresponding height for 
each 20 m or 25 m radius circular plot. Total tree count density (# tree 
counts/ha) and AGBD are included for each plot. 

The vertical tree height distribution showed distinct features for the 
three NE sites. We discussed their differences as follows. The vegetation 
structure was quite similar in the Bartlett B2 and C2 stands. Both stands 
had trees with different stand ages from mature trees (dominant and 
codominant trees) to intermediate and young stands (tree height < 10 
m) (Fig. 4, rows 1–2), except for the C2-NW plot with many small trees. 
The features suggest that the B2 and C2 stands were very dense forests 
with different tree stand ages and most tree densities >800/ha. 

Waveforms and foliage profiles for Bartlett B2 and C2 stands have 
similar features to tree height distribution. The waveforms in each plot 
have a relatively symmetric vertical pattern along the middle of the 
canopy. For the plots with vertically evenly distributed tree heights (C2- 
CT, C2-NE, C2-NW, and C2-NE), the vertical foliage profiles were 
featured with evenly distributed foliage vertically from the lower to the 
upper canopy, corresponding to vertically evenly distributed tree height 
distributions. Some waveforms in C2-CT, C2-NE, and C2-SE suggest that 
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maximum tree heights should be taller than modeled maximum tree 
heights, indicating that tree height variability was suppressed by 
modeled tree heights. One waveform in each C2-CT, C2-NE, C2-SE, and 
C2-SW plot has only ground returns and no vegetation returns. Overall, 
waveforms and foliage profiles corresponded reasonably well with tree 
height distribution for all B2 and C2 plots. 

Compared to the B2 and C2 stands, the two Harvard stands, Hard
wood and Hemlock had relatively different vegetation structure pat
terns. Both stands were less dense (around 500–600/ha) (Fig. 4, rows 
3–4) than the B2 and C2 stands. However, both were dominant/ 
codominant forest stands, with a few small trees in each plot. The 
waveforms and foliage profiles of both stands echo similar features. Peak 
laser returns in waveforms at the top of the canopy indicate that both 
stands were featured by dominant/codominant and intermediate trees, 
agreeing with what was observed in the field data. Foliage profiles with 
most foliage were at the upper canopy layer and decreased downward. 
Both peaks in waveforms and foliage profiles in these two stands are 
closer to the canopy top, different from what was observed in the B2 and 
C2 stands with uniform foliage distribution from the lower to the upper 
part of the canopy layer. This feature reinforces that most trees in these 
two Harvard stands were mature dominant and codominant trees, 

corresponding to tree height distributions. 
Two conifer stands in Howland had distinct features in tree height 

distribution and corresponding waveforms and foliage profiles (Fig. 4, 
rows 5–6). The sparest stand, Shelterwood, was a recently-harvested 
conifer forest, with a tree count density of <716/ha of various small 
and intermediate trees. Tree heights were almost evenly distributed 
vertically. Most were <20 m for all five plots. In contrast, the Tower 
stand, the densest forest stand for all the NE sites, had a tree count 
density above 1600/ha with many intermediate and young trees for all 
three plots. Most tree heights were between 10 and 15 m. 

The corresponding waveforms and foliage profiles had similar pat
terns to the height distribution. The Tower stand had uniform wave
forms with the peak canopy returns in the middle of the canopy. The 
foliage profile in the Tower stand indicated a peak foliage density in the 
middle of the canopy. In contrast, waveforms in Shelterwood had 
weaker canopy returns, but relatively more robust ground returns than 
the Tower or other NE stands. The foliage density profiles in Shelter
wood had much less foliage than in the other stands. Also, at least half of 
the waveforms in each Shelter plot exhibited significant ground returns 
with minimal returns from vegetation, mainly due to cutting. 

Fig. 5 illustrates the similarity of tree height distribution and 

Fig. 3. Whisker plots of aboveground biomass density, vegetation cover, tree height, and the topographic slope for both the CA and NE sites. Both plot-level tree 
height and vegetation cover were estimated using LVIS data. 
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Fig. 4. Overlay of normalized LVIS waveforms (black), apparent foliage profiles (green), and tree height distribution (tree counts per 1 m vertical grid) in each of the 
20 m/25 m diameter circular plots in NE sites. The title regards the stand name followed by the plot name. Aboveground biomass density (Mg/ha) and total tree 
count density (tree counts/ha) for each plot are marked in the lower right corner of each panel. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 5. Overlay of normalized LVIS waveforms (black), apparent foliage profiles (green), and tree height distribution (tree counts per 1 m vertical grid) for the 25 
plots of the CA site. The title regards the plot number. Aboveground biomass density (Mg/ha) and total tree count density (tree counts/ha) for each plot are marked in 
the upper right corner of each panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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waveforms and foliage profiles for the 25 plots of the CA site. Note that 
the tree height distribution refers to the vertical distribution of tree 
count per 1 m vertical interval for each 30 m × 30 m horizontal grid 
area. Total tree count density (# tree counts/ha) and AGBD for each plot 
were included. 

The CA site was much sparser, and had taller trees comparing to the 
NE sites. Most plots had a tree density between 100 and 300 trees/ha, 
except for a few dense plots (plot #279, #159, #99, and #314). Some 
very sparse plots (plots # 701, #509, #172, and # 215) had tree count 
density <100 trees/ha. Many plots were mixed with very tall dominant/ 
codominant trees (tree height above 40 m and intermediate and young 
trees (plot #138, #140, #153, #168, #171, #305, #334, #406, and 
#801). Some plots (plot # 23, #31, #84, #99, #122, #159, #172, 
#279, #301, #314, #338, #509, and #701) were featured with inter
mediate and young short trees (tree height < 40 m). The densest plots 
had mostly young trees: plot #279 with 729 trees/ha with most tree 
height <30 m, #159 (tree density 513 trees/ha) with many small and 
intermediate trees, #99 (tree density 441 trees/ha), and #314 (tree 
density 360/ha). Tree height for most plots had much larger variations 
than the NE sites. 

The corresponding waveforms and foliage density profiles of the 
plots reflected similar vegetation structure characteristics. There were 
three distinct features: First, waveforms had weaker peak canopy returns 
and more robust ground returns for most CA plots, indicating sparse 
forests. One exception is plot # 279, with similar vegetation and ground 
peak returns. Compared to the NE stands, the differences between the 
waveform and foliage profiles were relatively small due to sparseness. 
Second, the vegetation structure had significant variations among the 
plots. Tree height ranged from 5 to 10 m (plot # 509 and #701) to 80 m 
(plot # 801). Many waveforms indicated taller trees (> 40 m) in the CA 
plots, while the NE plots had a maximum height lower than 30 m. 
However, waveforms had significantly short trees or almost no vegeta
tion returns for some CA plots (i.e., plots # 701 and # 509) with a total 
canopy gap probability of 0.93 and 0.81, respectively. Some had mixed 
tall and short trees within plots. These features were consistent with 
what was observed in the tree distribution profiles. Finally, some plots 
were featured with various waveforms and foliage profiles. 

Canopy peak returns in waveforms within a plot occurred at different 
heights, and were less uniform than the NE plots. For example, plot 
#301 had one waveform with a canopy peak at around 40 m and one 
waveform with a canopy peak at 10 m corresponding to one tall tree (40 
m) and many young trees as observed in tree height profiles. Overall, the 
features shown in the waveforms and foliage profiles were consistent 
with the tree distribution profiles. This similarity between waveforms/ 
foliage profiles and tree height distribution supported our hypothesis 
that waveforms and foliage profiles are good indicators of tree height 
distribution. The similarity of vertical tree distributions with waveforms 
and foliage profiles was in agreement with (Stark et al., 2015; Stark 
et al., 2012). They found that vertical foliage profiles and waveforms 
were associated with tree size distribution and forest demography in 
tropical Amazon forests. 

4.3. AGB - height allometric relationships 

The AGB-height scaling exponent present in our model could be 
estimated using two approaches: one is using the formula we derived in 
our model, 1 + 2

β − ∝ which is based on the allometric relationships of 
height with stem diameter (β) and crown volumes with tree height (∝). It 
could also be estimated based on the AGB and height measurements if 
available. To verify the validity of height and aboveground biomass 
allometric relationships presented in our model, we first attempted to 
analyze the relationships of tree height with stem diameter and crown 
volume with tree height to derive the height scaling exponent, 1 + 2

β − ∝ 
with available sampled tree height, stem diameter, and crown diameter 
measurements in the NE sites. Then we analyzed the AGB - tree height 

allometric relationships in both NE and CA sites based on the calculated 
AGB and the tree height measurements. 

The natural logarithms of tree height and stem diameter show a near- 
linear relationship, with R2 = 0.66 and scaling exponent β = 0.61 (Fig. 6, 
top left panel). However, it seems that the linear relationship varies at 
young and mature trees. The natural logarithms of the horizontal crown 
radius and stem diameter imply a relatively weak linear relationship, 
with R2 = 0.14 (Fig. 6, top right panel). The NE sites were mixed forests, 
half deciduous forests, and half coniferous forests. Crown shape differ
ences between these two forest types might cause this weak relationship. 
The natural logarithms of the crown volume and tree height relationship 
were more robust, with R2 = 0.39 and the scaling exponent α = 1.89 
(Fig. 6, middle left). The AGB - height scaling exponent was estimated to 
be 1+ 2

β − ∝ = 2.39. The natural logarithms of the AGB and tree height 
also indicates a near-linear relationship, with slightly different slopes for 
young and mature trees. The suggested 1 + 2

β − ∝ = 2.56 for the NE sites 
(Fig. 6, middle right panel). These two values were similar. Verifying the 
formula for the height scaling exponent was valid. 

For the CA site, at the individual tree level, logarithms of tree height 
and stem diameters showed a linear relationship with R2 = 0.64 and the 
scaling exponent β = 0.84 (Fig. 6, bottom left panel). The natural log
arithms of AGB and H implied a near-linear relationship, with slightly 
different slopes for young and mature trees. The AGB - tree height 
scaling exponent 1 + 2

β − ∝ = 2.32 (Fig. 6, bottom right). This value was 
within the range of the field measurements (2.2–2.7) in cascade Oregon 
(Agee, 1981). 

This analysis demonstrated that the height scaling exponent calcu
lated based on stem diameter and crown volume with allometric re
lationships agrees well with the field-measured AGB and height scaling 
exponent for the NE site. Our analysis also indicated that the height 
scaling exponent values were close for these two test regions/biomes. In 
the following section, we evaluated the performance of the model using 
a scaling exponent of 2.4. 

4.4. Relationship between aboveground biomass and biomass indices 

With height scaling exponent value c = 2.4, we calculated two 
biomass indices from each waveform, aggregated them at the plot level, 
and compared them to field measured AGBD for the NE sites, the CA 
sites, and the combined NE and CA sites, respectively (Fig. 7). Fig. 7 
shows that both indices had strong links with AGBD for all the test cases. 
For the NE sites, the waveform-based and foliage-based biomass indices 
had coefficients of determination (R2) of 0.81 and 0.80, root mean 
squared error (RMSE) of 27.08 Mg/ha and 27.96 Mg/ha, and normalized 
RMSE based on the mean observed AGBD (NRMSE) of 0.15 and 0.16, 
respectively. The CA site has higher R2 values (0.88 for both indices), 
higher RMSE (108–109 Mg/ha for both indices) and NRMSE (0.31 for 
both indices). When combined with NE and CA sites, R2 values reached 
0.9 and 0.87 for waveform-based and foliage-based biomass indices, 
respectively, higher than the NE and CA sites alone. RMSE values (66 
Mg/ha and 73 Mg/ha for both indices) and NRMSE (0.28 and 0.31 for 
both indices) were lower than the CA site alone. Both biomass indices 
had similar performances for the NE and CA sites alone and the com
bined CA+NE data. 

We also compared the performance of biomass indices with lidar 
height metrics, including RH 75 and RH50, and linear regression of 
RH100, RH75, and RH50 for the AGBD estimate. For the NE sites, R2 

values for RH75, RH50, and the regression of RH100, RH75, and RH50 
were 0.82, 0.84, and 0.84, respectively. The corresponding RMSE values 
were 26 Mg/ha, 25 Ma/ha, and 25 Mg/ha, and NRMSE values were 
0.15, 0.14, and 0.12. Overall a regression of RH100, RH76, and RH50 
had the best performance. Both biomass indices had similar performance 
with height metrics. 

However, biomass indices performed much better than height met
rics for CA sites. R2 values for RH75, RH50, and the regression of RH100, 
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RH75, and RH50, were 0.69, 0.74, and 0.74, respectively, much lower 
than 0.88 for biomass indices. RMSE values were 177 Mg/ha, 162 Mg/ 
ha, and 162 Mg/ha, much larger than 110 Mg/ha for biomass indices, 
and NRMSE values were 0.5, 0.46, and 0.46 comparing to NRMSE =
0.32 for biomass indices. Both biomass indices outperformed all the 
height metrics. Height metrics underestimated aboveground biomass, 
mainly in regions with large biomass. Both biomass indices overcome 
this underestimation problem. 

When combining all the plots (CA + NE), both biomass indices 
outperformed height metrics (R2 = 0.89 and RMSE = 68 Ma/ha and 73 

Mg/ha for biomass indices vs. R2 = 0.72, 0.55, and 0.73, RMSE = 110, 
139, and 107 Mg/ha, and NRMSE = 0.46, 0.59, and 0.46 for RH75, 
RH50 and regression of (RH100, RH75, and RH50). Height metrics 
tended to underestimate AGBD at large biomass values. The NE and CA 
sites have significant spatial variations of vegetation characteristics, 
aboveground biomass, and environmental conditions. These results 
suggested both biomass indices show a considerable advantage in esti
mating aboveground biomass at large spatial scales across significant 
variations of aboveground biomass values. 

We calculated biomass indices with a range of scaling exponent 

Fig. 6. Allometric relationships of tree height (H) with stem diameter (D), crown radius (Rc) with stem diameter, crown volume with tree height, and AGB with 
height (H) for the NE sites (top two rows), and tree height (H) with stem diameter (D) and AGB with height in the CA site (bottom panel). Top left panel also includes 
the modeled tree heights (in grey). 
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values varying from 1.0 to 3.0 at 0.1 intervals to assess the optimal 
height scaling exponent for all sites. We elucidated the model perfor
mance (R2 and RMSE) with different scaling exponent values and 
compared it to height metrics (Fig. 8). Both indices performed similarly 
in all the scaling exponent values we tested for the NE sites, with R2 

ranging from 0.84 to 0.79 and RMSE from 25 to 28 Mg/ha. At relatively 
lower height scaling exponent values (1.0–1.4), both biomass indices 
reached the best performance (R2 = 0.84 and RMSE = 25 Mg/ha) and 
were similar to the best of all height metrics (R2 = 0.84 and RMSE = 25 
Mg/ha with the regression of RH100. RH75 and RH50). Both indices had 
a similar performance for the CA site, with the best performance when 
the scaling exponent value was >2.3. Both biomass indices performed 
more adequately than height metrics (higher R2 and lower RMSE). For 
the combined NE and CA cases, both indices showed significant ad
vantages over height metrics for scaling exponent values >1.8. The 
performance of both indices reached a plateau when the scaling expo
nent value was >2.4, with the highest R2 (0.90) and lowest RMSE (64 
Mg/ha). Reasonably good AGBD estimates with a general height scaling 
exponent value (1.8) were achieved by the model. The waveform-based 
biomass index correlates well with AGBD, with R2 = 0.83 and RMSE =
84 Mg/ha. 

5. Discussion 

Our model directly used large-footprint lidar waveform measure
ments to estimate plot-level aboveground biomass density. We associ
ated tree height and crown size distribution with waveforms and scaled 
up individual tree-based AGB and height allometric equations to plot 
level. Plot-level aboveground biomass density was estimated using 
waveform /foliage-weighted height-based allometric equations. The 
AGBD-height scaling exponent varies with the allometric height-stem 
diameter and crown volume-height relationships. 

We adopted a global database of 108,753 tree measurements of stem 
diameter, height, and crown diameter to estimate the scaling exponent. 
The height scaling exponent values calculated using the global database 
range from 1.6 to 1.8 for all forest biomes except for boreal forests (0.9). 
Our analysis suggested that one general model works reasonably well 
across all global forest biomes except for boreal forests. 

We applied the model in two distinct geographic regions—temperate 
deciduous/conifer forests in the northeastern US and a montane conifer 
forest in Sierra National Forest in California. The AGBD-height scaling 
exponents estimated using site-specific vegetation structure measure
ments for these two biomes/regions were close to each other (2.3–2.58). 
These scaling exponents estimated for both test sites agree well with the 
observations in conifer forests in the northwest US (Agee, 1981) 
(2.2–2.7). These results reinforced the generality of the model. 

Our model produced the optimal AGBD estimates using the local 
AGBD-height scaling exponent value. Both biomass indices in our 
analysis correlated well with field-measured AGBD, reaching the best 
performance with a coefficient of determination R2 = 0.89, RMSE = 66 
Mg/ha, and normalized RMSE around 0.28 when combining both the NE 
and CA sites. The model with a general scaling exponent value provided 
reasonable AGBD estimates. The waveform-based biomass index was 
correlated with AGBD with RMSE = 84 Mg/ha, NRMSE = 0.36, and R2 

= 0.83. Our analysis implies that using the general height scaling 
exponent provides reasonably good estimates of AGBD. However, inte
grating local structure allometric relationships improved the predictive 
accuracy of the model. 

Both biomass indices performed similarly regarding AGBD estimates 
in the NE and CA sites. The waveform-based biomass index performed 
slightly better in some cases than the foliage-based biomass index. The 
waveform-based index is straightforward to implement, which may give 
it broader applicability. The foliage profile-based index involves one 
additional step of deriving the canopy gap probability and a logarithmic 

Fig. 7. Comparison of relationships of field-measured aboveground biomass density (AGBD) with waveform-based biomass index (BIWF, top row) and with foliage 
profile-based biomass index (BIFP, second row), RH75 (third row), RH50 (fourth row), and linear regression of (RH100, RH75, and RH50) (last row) for the NE sites 
(first column, deciduous plots in blue), the CA site (middle column) and the combined NE and CA sites (last column, the NE plots in red). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Performance (Coefficient of determination - R2and RMSE) of waveform-based and foliage-based biomass indices for predicting aboveground biomass with the 
height scaling exponent for the NE site, the CA sites, and combined NE and CA sites. Horizontal lines indicate the performance of RH50 and RH75 and the regression 
of RH100, RH75, and RH50. 
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transformation, which may introduce additional error sources. Further 
tests are required to evaluate their performance. 

We compared the performance of biomass indices to the traditional 
lidar height metrics-based approach for AGBD estimation. Our analysis 
found that biomass indices performed similarly to the lidar height 
metrics-based method for low and medium-range biomass. However, 
both indices outperformed the height-based approach in high biomass 
regions. The height metrics-based approach underestimated above
ground biomass in high biomass regions (old-growth Sequoia forests), 
which was overcome by biomass indices. While removing the extreme 
large 1500 Mg/ha point will result in similar performance between 
biomass indices and height metrics. Theoretically, our scaling scheme 
provides a consistent framework for linking bottom-up demographic 
estimates of biomass and top-down lidar footprint estimates of biomass. 
A region with large biomass may not be as frequent as low to medium 
biomass regions. However, large biomass regions often make a more 
significant contribution to total biomass estimation due to their large 
biomass values. Old-growth Sequoia forests produce more aboveground 
biomass annually—and sequester more carbon than forests dominated 
by other species (Sillett et al., 2020). It is critical to have accurate 
biomass estimates for large biomass. 

The model had two components—biomass indices and coefficients. 
Biomass indices directly connected lidar waveform measurements with 
the dominant structural variables—tree height and crown size distri
bution directly contributed to plot-level AGBD. This study mainly 
focused on model development and the initial assessment of the corre
lation of biomass indices with field-measured AGBD. Other parameters 
in the coefficients kFW and kFP, such as tree taper, F, the wood-specific 
gravity, ρ, clumping factor, γ, and foliage volume density, Fa, also 
affect AGBD. In our study sites, the lack of specific field measurements of 
these parameters prevents us from thoroughly analyzing the impact of 
those variables on aboveground biomass. However, we are evaluating 
this model in the tropical forest in a separate study, including some of 
those variables, such as wood-specific gravity in our analysis. 

Our initial assessment demonstrated that the biomass indices ac
count for about 81%–89% of AGBD variability (Fig. 7). Therefore, the 
other 11–20% AGBD variability was contributed by the parameters in 
the coefficients kFW and kFP components, which were not universal. Tree 
taper, F = 0.6 for broadleaf species, and F = 0.333 for perfect conical 
shape (Chave et al., 2005). Wood specific gravity varies with species and 
plant functional types. The clumping factor, γ, varies with tree structure 
characteristics (shape, size, tree count density, and within-crown foliage 
density) and foliage volume density, Fa may vary with species and stand 
age. 

We found the R2 value in the montane CA conifer forest sites (0.89) 
was slightly larger than the one (0.81) in temperate NE mixed forests 
sites in this study. Likely, roughly 19% for the NE sites and 11% for the 
CA sites of AGBD uncertainties were contributed by the parameters in 
the coefficient term of the model. Conifer forests dominated the CA sites. 
However, the NE sites were mixed with coniferous and deciduous for
ests, and had more diverse species than the CA sites. The species and 
plant function diversities may result in more considerable variations in 
wood-specific gravity and wood taper for the NE plots than CA plots. 
Larger variations in the coefficient terms in the NE sites may explain the 
larger uncertainties of AGBD estimates using biomass indices only. It is 
critical to characterize the variability of these variables to improve the 
predictive accuracy of the model. 

In addition, lidar saturation might occur in dense forests, as previ
ously discussed (Ni-Meister et al., 2010a). All the NE stands were dense 
forests except Shelterwood, making waveforms less sensitive to different 
vegetation structure conditions and AGBD changes. As discussed before, 
one waveform in each C2-CT, C2-NE, C2-SE, and C2-SW plot had only 
ground returns and no vegetation returns. Maybe, in reality, these 
footprints had no vegetation. However, it was also possible that vege
tation was too dense in these footprints for the ground detection algo
rithm to detect ground returns correctly. Very dense forests could make 

the lidar waveforms less sensitive to vegetation structure and less ac
curate AGBD estimates using lidar waveform measurements. The time 
gaps between the field data (2003, 2007) and the LVIS data (2009) 
might also contribute to the large AGBD uncertainties in the NE sites. 

Future work will include testing the sensitivity of those parameters in 
coefficient terms and identifying the most critical structure parameters. 
However, many of these parameters were correlated, which poses a 
challenge for sensitivity analysis. More field data are required to assess 
the performance of the model fully. 

6. Conclusion 

The model presented in this study directly used large-footprint lidar 
waveform measurements to estimate plot-level aboveground biomass 
density. Individual tree-based AGB and height allometric equations were 
scaled up to plot-level using the tree height and crown size distribution 
characteristics measured by waveforms. The plot-level aboveground 
biomass density was estimated based on a waveform/foliage profile- 
weighted height-based allometric equation. The height scaling expo
nent in the model was built on the allometric relationships of tree height 
with stem diameter and crown volume with tree height. Initial assess
ment using a global database of 108,753 tree measurements of stem 
diameter, height, and crown diameter demonstrated that one general 
model (scaling exponent value ~1.6–1.8) works reasonably well across 
all global forest biomes except boreal forests (scaling exponent value 
~0.9). 

We applied the model to two different forest biomes in two distinct 
geographic regions—temperate deciduous/conifer forests in the north
eastern USA and a montane conifer forest in Sierra National Forest in 
California. We found a consistent height scaling exponent for these two 
distinct biomes based on field vegetation structure measurements. Still, 
this value was slightly different from the global data analysis results. 
Using the local height scaling exponent value, our model produced 
optimal AGBD estimates. It Using the general heigh scaling exponent 
also provided reasonably good AGBD estimates. Our analysis demon
strated one general allometric relationship of plot-level AGBD with 
large-footprint lidar waveforms. Integrating local structure allometric 
relationships improved the predictive accuracy of the model. 

We compared the performance of biomass indices to those using the 
traditional lidar height metrics-based approach for AGBD estimation. 
Our analysis showed that both indices outperformed the height-based 
approach in high biomass regions. The lidar height metrics-based 
approach underestimated aboveground biomass in high biomass re
gions, which was overcome by biomass indices. Our model could be 
applied on a large scale with various vegetation structure conditions to 
obtain high-accuracy aboveground biomass estimates. 

This model directly links plot-level aboveground biomass using 
large-footprint lidar waveform measurements. This approach was 
appealing as it eliminated the need for site-based calibration efforts to 
estimate aboveground biomass using lidar waveform measurement. It 
reduced the number of steps (waveforms to RH values and RH values to 
AGBD with site-based calibration) for estimating AGBD and mitigating 
the uncertainties caused at each step. This model can potentially curtail 
the site-specific calibration effort for aboveground biomass estimates 
using medium-range lidar full-waveform measurements. 

This model could potentially serve as a general and robust approach 
for monitoring forest carbon stocks using large-footprint lidar waveform 
measurements, such as the GEDI mission at the continental and global 
scales. Demography-based terrestrial ecosystem model simulates carbon 
stock and flux using ecosystem demography (tree size and height dis
tribution). The model could be a framework for integrating demography 
terrestrial ecosystem models and ecosystem demography measurements 
from GEDI full-waveform measurements to improve global carbon stock 
and flux estimates. 
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Nomenclature 

Roman alphabet 

a Coefficient of aboveground biomass and height relationship 
b coefficient of tree height and stem diameter relationship 
D Stem diameter - diameter at breast height 
F Tree tapering factor 
Fa Foliage volume density (m2/m3) 
G Leaf orientation function 
H Tree height 
Le(z) Cumulative effective leaf area index from the canopy top to 

height z 
n Total number of height class 
P(0,z) Canopy gap probability at height z for nadir pointing angle 
Pgap Averaged canopy gap probability 
r Averaged horizontal crown radius 
Rv(z) Accumulated laser energy return from the canopy top to 

height Z 
Rv(0) Accumulated laser energy return for the whole canopy layer 
Rg Laser energy returns from the ground 
z1 Lower boundary of vegetation canopy 
z2 Upper boundary of vegetation canopy 
z Height in the canopy 

Greek alphabet 

α Crown volume and tree height scaling factor and a is the 
coefficient. 

β Height and stem diameter scaling factor, 
λ(z) The accumulated tree crown density from the canopy top to 

tree height z. 
dλi(zi) tree count density at height interval from zi to zi+1, 
dλ(z)

dz The tree crown count density distribution function, i.e., tree 
crown count density per unit vertical interval, in the unit of 1/ 
m3 

ρ Wood density (g/cm^3) 
γ Clumping factor ρv Volume backscattering coefficient of a 

canopy element 
ρg Backscattering coefficient of the ground 
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