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[1] While it has been shown that soil moisture data assimilation techniques can be used to
constrain land surface model predictions with remotely sensed soil moisture observations
to provide optimal climate model surface and root zone soil moisture initialization, a
good understanding and quantification of both model and observation error are required.
In this paper we therefore evaluate the catchment-based land surface model (CLSM) and
scanning multichannel microwave radiometer (SMMR) soil moisture estimation errors
using long-term in situ soil moisture measurements available for Eurasia. Generally, the
CLSM surface and root zone soil moisture was found to be biased less than 0.08 vol/vol dry
in dry climate and frozen soil areas and biased over 0.08 vol/vol (as high as 0.16 vol/vol)
wet in wet climate areas. Moreover, the CLSM suffered from an underestimation in
surface zone seasonal soil moisture variation. While the SMMR soil moisture estimates
were also biased, less than 0.05 vol/vol dry in dry climate and over 0.10 vol/vol (as high as
0.2 vol/vol) wet in wet climate, they generally had accurate seasonal variations. This error
characterization study is crucial for practical Eurasian data assimilation, as unbiased
observations and model predictions, and reliable knowledge of relative observed and model
predicted soil moisture errors are key data assimilation assumptions. This study therefore
provides the error information required for data assimilation and emphasizes the need
for careful bias representation when assimilating SMMR data into the CLSM. The potential

deficiencies in this error assessment are acknowledged and discussed, including the
disparate time-space representation of the various soil moisture sources.

Citation: Ni-Meister, W., J. P. Walker, and P. R. Houser (2005), Soil moisture initialization for climate prediction: Characterization
of model and observation errors, J. Geophys. Res., 110, D13111, doi:10.1029/2004JD005745.

1. Introduction

[2]1 Accurate land surface moisture initialization in fully
coupled climate system models is critical for seasonal-to-
interannual climatological and hydrological prediction.
Koster and Suarez [1995] and Koster et al. [2000a] have
shown that the contribution of soil moisture to precipitation
prediction outweighs ocean processes in transition zones
between dry and humid climates. These studies have also
shown that soil moisture persists on a seasonal timescale
and that soil moisture anomalies often lead to precipitation
anomalies a few months later. This modeled seasonal soil
moisture persistence is in general agreement with long-
term in situ soil moisture data [Vinnikov et al., 1996; Entin
et al., 2000]. These studies are among many that indicate
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that accurate soil moisture initialization may lead to
improved seasonal-to-interannual climate prediction.

[3] Many land surface process models have been devel-
oped to describe energy and moisture exchange between the
land surface and atmosphere. While observed land surface
forcing (such as precipitation and radiation) can be used in
uncoupled land surface models to yield better soil moisture
estimates than coupled models, soil moisture and flux
predictions can still be poor due to poor initialization,
forcing errors, simplified model physics, and uncertain
model parameters [Houser et al., 2001]. Constraining model
states using remotely sensed observation assimilation may
mitigate these errors and improve subsequent predictions.

[4] Satellite remote sensing can provide technically con-
sistent global surface soil moisture estimates for use in
climate model initialization that cannot be obtained through
traditional in situ observation networks. Global 25-km
resolution surface soil moisture has been estimated using
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Figure 1. Distribution of Eurasian in. situ observation stations and coinciding catchments used for
comparison in this study. Two boundary lines to divide Russia into western Russia and eastern Russia,
China into northern China and southern China, and the region with wilt level in situ measurements are

also shown.

C-band passive microwave observations from the Nimbus 7
satellite scanning multichannel microwave radiometer
(SMMR) for the 19791987 period [Owe et al., 2001].
While no C-band passive microwave satellite measurements
are available between SMMR and the 2001 launch of the
Aqua satellite Advanced Microwave Scanning Radiometer
for the Earth observing system (AMSR-E), low-latitude soil
moisture has been estimated using Tropical Rainfall Mea-
suring Mission (TRMM) X-band microwave observations
[Bindlish et al., 2003; Gao et al., 2003] since 1998. These
microwave-based soil moisture estimates are confined to the
top few centimeters of soil and are subject to significant
vegetation, soils, and roughness error sources. However, it
has been widely demonstrated that assimilation of these
surface soil moisture observations into land surface models
should help mitigate model and observation errors and
provide a more accurate root zone soil moisture estimate
than modeling alone, which will be crucial for accurate
climate prediction model initialization [Walker and Houser,
2001].

[5] The NASA Global Modeling and Assimilation Office
(GMAO; formerly known as the Seasonal-to-Interannual

Prediction Project, or NSIPP) aims to improve seasonal-to-
interannual climate predictions using a global coupled Earth
system model. To enhance climate prediction skill, innova-
tive data assimilation algorithms are being developed to
merge satellite data and model predictions. To this end,
Walker and Houser [2001] included an extended Kalman
filter (EKF) surface soil moisture data assimilation strategy
in the GMAO’s catchment-based land surface model
(CLSM) [Koster et al., 2000b]. This assimilation system
was proved and refined using a synthetic twin experiment.
Walker and Houser [2001] found that the unique CLSM
physics are well suited for surface soil moisture assimila-
tion, as the dominant prognostic moisture state variable
(catchment deficit) has a significant correlation with surface
soil moisture content except in very deep soils.

[s] The ensemble Kalman filter (EnKF) has also been
implemented in the CLSM [Reichle et al., 2002], being
simply an alternative methodology for propagating the state
covariance matrix that does not require model linearization.
Reichle et al. [2002] evaluated the relative EnKF and EKF
benefits using synthetic soil moisture observations. Their
study demonstrated that both the EKF and EnKF produced
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satisfactory soil moisture estimates, with the EnKF slightly
outperforming the EKF when five or more ensemble mem-
bers were used. However, the performance of both the EKF
and EnKF is dependent on the assumption that model
predictions and observations are unbiased and that reliable
estimates of model and observation error are available.
Therefore this study characterizes the CLSM and SMMR
errors using the Eurasian in situ soil moisture observation
network, which is the most extensive soil moisture data set
available during the SMMR time period. This study differs
from a similar CLSM, SMMR, in situ soil moisture com-
parison study by Reichle et al. [2004] for Eurasia under-
taken in tandem with this study, in that they investigate only
the correlation between the various data sets rather than the
actual error magnitude in CLSM and SMMR data required
for data assimilation.

2. Data Sets

[7] Figure 1 shows a map of the Eurasian in situ mea-
surement station network and the corresponding CLSM
catchments used in the evaluation. Details of the in situ,
SMMR, and CLSM data sets are described in the following
sections.

2.1. In Situ Observations

[8] Historical Eurasian soil moisture observations
archived in the Soil Moisture Data Bank (SMDB) [Robock
et al., 2000] provide the validation data that underpin
this paper’s error analysis. The SMDB has 43 Chinese,
36 Mongolian, and 130 Russian soil moisture monitoring
stations with 1981-1991, 1973-1997, and 1978-1985
periods of record, respectively. Most soil moisture monitor-
ing sites were located in grass or crop fields, with each
observation value being the average of four sample points
across a plot area of 0.1-20 ha. Soil moisture profiles were
measured biweekly over the top 1 m at 10-cm increments
using the standard gravimetric technique. We define the
surface zone soil moisture as the shallowest observation
available, which for China is the top 5 cm and for Mongolia
and Russia is the top 10 cm, and define root zone soil
moisture as the top 1-m average.

[s] The SMDB includes a mix of plant available (Mon-
golia and Russia) and total (China) soil moisture, expressed
as water volume divided by dry soil volume. Plant available
soil moisture is the difference between the total soil mois-
ture and the soil moisture at which vegetation begins to wilt.
The plant available soil moisture observations for Mongo-
lian and Russian sites were converted to total soil moisture
to create a consistent data set and for comparison with
model and remotely sensed soil moisture estimates, by
adding the volumetric wilting point moisture content. As
no wilting point observation data were available for Mon-
golia and Russia, the volumetric wilting point was estimated
using a specified wilting point potential, soil properties
(porosity, saturated soil suction, and Clapp and Hornberger
b parameter) based on soil texture [Reynolds et al., 2000],
and the Clapp and Hornberger soil moisture retention curve
relationship. Wilting point measurements for western Russia
(not coincident with the soil moisture stations (K. Vinnikov
and M. Mu, personal communication, 2003); see Figure 1
for the area) were then used to verify the wilting point
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Figure 2. Comparison between (a) interpolated in situ
wilting point measurements and (b) estimated wilting point
based on soil texture properties (vol/vol). Figure 2¢ shows

their difference.
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estimates (Figure 2); wilting point was obtained by mea-
suring soil moisture content at the time when plant wilting
onset was observed. Overall, the interpolated wilting point
observation field matched the estimated wilting point field
well with a slight overestimation (0.05 vol/vol) in the north,
giving confidence in the estimates at Mongolian and Rus-
sian stations. While the overestimation of wilting level may
lead to slightly wet biased Russian and Mongolian obser-
vation soil moisture estimates, it does not affect the seasonal
or interannual soil moisture change estimates.

[10] Figure 3 shows the SMDB surface and root zone total
soil moisture seasonal variations (19791987 average). The
four seasons are defined as winter (December through
February), spring (March through May), summer (June
through August), and fall (September through November).
The SMDB Eurasian soil moisture patterns were found to
generally follow the precipitation and vegetation patterns.
China’s monsoonal climate results in high soil moisture
content along the coastline with a dry interior. The boundary
between western China and eastern Russia near the Tibet
Plateau is also wet, due to orographic precipitation. A
division between wet and dry Russian and Mongolian
regions is identified along latitude 50°—52°N. To the north,
soil moisture content is generally above 0.25 vol/vol,
while to the south soil moisture content is generally below
0.25 vol/vol. During summer this soil moisture division line
shifts to the north, and during winter it shifts to the south.
Vegetation reflects this soil moisture pattern with forest to
the north and grasslands to the south.

[11] The largest soil moisture variations with depth are
observed in China, with a surface zone that is much drier
than the root zone. The Mongolian and Russian vertical soil
moisture profiles are almost constant with depth. The larger
vertical variation for Chinese stations may be related to
China’s monsoonal climate. Russia has the strongest sea-
sonal soil moisture variation, having dry summers with wet
winter and spring months, while the Chinese and Mongolian
seasonal soil moisture variations are weak. The strong
seasonal variation in Russia is directly related to snow
accumulation and snowmelt.

2.2. Satellite Observations

[12] Surface zone (top 1 cm) soil moisture estimates at
25-km spatial resolution have been derived from the
Nimbus 7 scanning multichannel microwave radiometer
(SMMR) observations from 1979 to 1987 [Owe et al.,
2001]. The Nimbus 7 Sun-synchronous orbit resulted in
two overpasses daily (noon and midnight), which have both
been used in this analysis. The Owe et al. [2001] theoretical
retrieval algorithm is distinctive from other approaches in
its use of both the horizontal (H) and vertical (V) 6.6-GHz
(C-band) polarizations together with temperature derived
from the 37-GHz V data to solve for surface zone soil
moisture and vegetation optical depth simultaneously.
While the spatial resolution for SMMR data varies from
25 km at 37 GHz to 150 km at 6.6 GHz, due to over-
sampling, the 6.6-GHz SMMR observations were binned
into 25-km global brightness temperature maps and the
surface soil moisture was retrieved.

[13] The soil moisture algorithm has been validated using
in situ soil moisture observations from Illinois [Owe et al.,
2001], Russia, Mongolia, and Turkmenistan [De Jeu and
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Owe, 2003]. The validation results indicated that soil mois-
ture estimation accuracy was approximately 0.10 vol/vol and
that the soil contribution to observed brightness temperature
reduced to less than 25 percent for vegetation optical depths
above 0.6. Hence soil moisture data for pixels with optical
depth greater than 0.6 or soil moisture values greater than or
equal to the soil porosity were omitted from our analysis.
While the optical depth condition was used to screen soil
moisture estimates in areas of dense vegetation, the soil
porosity condition was used to screen unrealistic “wet”
pixels found in the data set, believed to have resulted from
divergence of the soil moisture retrieval algorithm.

[14] The SMMR-derived surface zone soil moisture sea-
sonal climatology for pixels coincident with SMDB obser-
vations is shown in Figure 4. As remote sensing of soil
moisture is impossible when the ground is snow covered,
there are approximately half the summertime station com-
parisons during wintertime. The spring and fall SMMR soil
moisture spatial patterns compare well with the SMDB in
situ measurements shown in Figure 3 with wet in the north
and dry in the south. For all seasons, SMMR shows a dry
bias in western Russia and Mongolia and a wet bias in
China. The dry bias shown in western Russian and Mon-
golian stations may be partially explained by the wet-biased
in situ observations in these stations from the potentially
overestimated wilting level used.

2.3. CLSM Predictions

[15] Novel CLSM features include its topographically
defined catchments [Koster et al., 2000b; Ducharne et al.,
2000], its explicit subgrid soil moisture variability treat-
ment based on statistical topography induced heterogeneity,
and its TOPMODEL [Beven and Kirkby, 1979] concept
used to relate water table distribution to topography. This
leads to the definition of three bulk moisture prognostic
variables (catchment deficit, root zone excess, and surface
excess) with specific moisture transfer between them.
Using these three prognostic variables, the catchment is
divided into stressed, unstressed, and saturated soil mois-
ture regimes with separate evapotranspiration flux calcu-
lations for each, and the catchment average surface zone
(top 2 cm), root zone (top 1 m), and profile (from 1 to
approximately 3.5 m depending on total soil depth) soil
moisture values calculated.

[16] The CLSM has been validated as part of the Project
for Intercomparison of Land Surface Parameterization
Schemes (PILPS)-2e [Bowling et al., 2003] and the
Rhone-Aggregation (Rhone-AGG) Soil-Vegetation-Atmo-
sphere-Transfer (SVAT) model intercomparison project
[Boone et al., 2004]. While the CLSM reliably reproduced
observed evaporation and runoff over large spatial scales,
there has been no previous large-scale validation of its soil
moisture prediction capability. The CLSM is still being
actively refined and is currently in the process of being
coupled with the GMAOQ’s atmosphere and ocean models.

[17] The 13,236 Eurasian catchments and their associated
CLSM parameters (soil properties, partitioning, base flow,
timescale of moisture transfer between root zone and water
table and between root zone excess and surface excess)
were derived from the Hydro 1-k topographic data [Verdin
and Greenlee, 1996] and a soil texture based estimation of
soil hydraulic properties [Cosby et al., 1984] using the FAO
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Figure 3. Eurasian in situ observed seasonal climatology of (a) surface (top 10 cm) and (b) root zone

(top 1 m) soil moisture (vol/vol) using 1979-1987 data.
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Figure 4. Eurasian SMMR-derived seasonal climatology of surface zone (top 1 cm) soil moisture
(vol/vol) using 19791987 data. For comparison purposes, only SMMR observations coinciding with

the in situ stations are shown.

Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis data developed by Berg et al. [2003] were used to
force the CLSM. This forcing data set has been shown to
reduce forcing-induced soil moisture, runoff, and snow
water equivalent simulation errors [Berg et al., 2003]. The
CLSM initial conditions were derived from model spin-up
by repeated simulation of 1979 for 10 years.

[18] The CLSM seasonal climatology for Eurasian catch-
ments coincident with SMDB observations is shown in
Figure 5 for the surface (top 2 cm depth) and root zone
(top 1 m depth) predictions. Both show similar surface and
root zone spatial patterns with wet conditions in the north
and dry in the south. Root zone soil moisture comparison
demonstrates that model predictions match well with the in
situ observations, but surface zone soil moisture comparison
suggests a depressed seasonal variation in the model esti-
mation, being too dry during the cold season, particularly in
western Russia. This cold season surface zone soil moisture
dry bias is a result of inadequate snowmelt model physics.

3. Results and Discussion

[15] While a qualitative assessment of the CLSM and
SMMR error is given above, here we focus on a quanti-
tative error characterization based on their comparison with
the SMDB in situ observations. This is complicated by
these three data sets having different sampling intervals
and depths. For example, when the biweeckly SMDB
observations do not align with a satellite overpass, it is
omitted from our comparison, resulting in only a fraction
of the available SMMR data being used. Likewise, only

CLSM output coinciding with the biweekly SMDB obser-
vations is used in the comparison. Further, each data set
has a fundamentally different surface zone layer thickness;
1 cm for SMMR, 5-10 cm for in situ, and 2 cm for
CLSM. Moreover, station measurements averaged over
0.1-20 ha areas are used to represent the areal average
soil moisture over 625-km* SMMR pixels and up to
10,000-km” catchments.

3.1. In Situ, SMMR, and CLSM Soil
Moisture Comparison

[20] To better understand the soil moisture seasonal cycle,
the average monthly 1979-1987 CLSM, SMMR, and
SMDB soil moisture data are compared for Russia, China,
and Mongolia in Figure 6 with mean standard deviations of
0.06 vol/vol. For these purposes, Russia is divided into
eastern and western regions along 70°E longitude and China
is divided into southern and northern regions along 40°N
latitude (see Figure 1).

[21] In Russia, both the SMMR and SMDB surface zone
soil moisture data show a stronger seasonal cycle than
the CLSM, with dry summers and wet winters. Moreover,
the SMMR data in western Russia show a dry bias of
0.10 vol/vol in all seasons except for fall compared with the
SMDB observations in western Russian. This dry bias may
be partially, but not entirely, explained by the possibly wet-
biased SMDB observations caused by too wet wilting level
added. In addition to its smaller seasonal cycle, the CLSM
surface zone soil moisture in western Russia shows a spring
and fall dry bias. However, the western Russia CLSM root
zone soil moisture is very close to the SMDB observations.
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Figure 5. Eurasian model-derived seasonal climatology of (a) surface (top 2 cm) and (b) root zone
(top 1 m) soil moisture (vol/vol) using 1979-1987 data. For comparison purposes, only model
predictions coinciding with the in situ stations are shown.
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Figure 6. Comparison of Eurasian average monthly in situ (asterisks), SMMR (diamonds), and model
(crosses) soil moisture (vol/vol) using 1979—1987 data. The left panels show surface zone soil moisture
and the right panels show root zone soil moisture for (a) western Russia, (b) eastern Russia, (c) northern

China, (d) southern China, and (¢) Mongolia.

This dry bias in winter and fall and depressed seasonal
variation in modeled surface zone soil moisture may be due
to the strong surface and root zone soil moisture coupling in
the catchment model, meaning that CLSM surface soil
moisture estimates are unrealistic. Compared with western
Russia, the soil moisture seasonality in eastern Russia is
weak and the SMMR data are quite close to SMDB
observations and the CLSM results still show a smaller
seasonal cycle.

[22] In China, both the SMMR and CLSM surface zone
soil moisture are wetter than the SMDB observations, with
the SMMR overestimation being larger. However, the
CLSM root zone soil moisture is drier than the SMDB
observations, particularly in winter and in southern China.
In northern China, the SMDB, CLSM, and SMMR seasonal
variation is stronger than that in southern China.

[23] In Mongolia, both the CLSM and SMMR surface
zone soil moisture are drier than the SMDB observations,
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Figure 7. Comparison of SMMR and model surface zone soil moisture RMSE, bias, and their
difference (vol/vol) for corresponding in situ observation stations in (a) Russia, (b) China, and

(c) Mongolia.

with slightly less SMMR underestimation. This Mongolian
dry bias may be due to inaccurate SMDB observations
(A. Robock, personal communication, 2004), point measure-
ments that poorly represent the areal average, or incorrect
wilting point estimates leading to inflated SMDB total soil
moisture observations.

3.2. SMMR and CLSM Soil Moisture RMSE and Bias

[24] Figure 7 shows scatterplots of the SMMR and CLSM
soil moisture RMSE, bias, and their difference for SMDB in
situ observations. The bias is defined as the long-term
difference between SMMR or CLSM and the SMDB
observations. To avoid error associated with incomplete
time series, any SMDB time series with less than 20
observations per year were excluded. Moreover, CLSM
and SMMR soil moisture error statistics were only calcu-

lated for coincident biweekly CLSM, SMMR, and SMDB
data.

[2s] The Russian CLSM and SMMR data have similar
RMSE and bias magnitudes. About half the stations show
a positive SMMR and CLSM bias, with bias contributing
to more than half of the RMSE. The Chinese SMMR soil
moisture RMSE and positive bias are larger than CLSM,
with a large bias contribution to the RMSE. The Mongo-
lian SMMR and CLSM soil moisture RMSE and bias are
very similar, with most of the RMSE contribution from
bias. Generally, both SMMR and CLSM are wetter than
the SMDB observations. Figure 8 shows the CLSM and
SMMR soil moisture RMSE and bias spatial distributions.
Here it can be seen that the bias and RMSE have very
similar spatial patterns, indicating that bias makes a
significant contribution to the overall model and observa-
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Figure 8. (left) Eurasian bias and (right) RMSE spatial distributions for (a) SMMR surface zone,
(b) model surface zone, and (c) model root zone soil moisture (vol/vol).

tion errors. Bias analysis will be the focus of the remainder
of the paper.

3.3. CLSM Soil Moisture Climatology Error

[26] Figure 9 shows the climatological (time series aver-
age) differences between the CLSM and SMDB surface
zone and root zone soil moisture by season. The CLSM is
biased dry in the already relatively dry Mongolian and
southern Russian climate. Along the relatively wet Chinese
east coast and the boundary between Mongolia and Russia,
the CLSM shows wet-biased surface zone and root zone soil
moisture. In northwestern Russia, the CLSM is biased very
dry in the winter and fall, and biased wet in the spring and
summer. This winter and fall dry bias may be partially
related to the CLSM’s simple soil freezing treatment and

partially due to the fact that the modeled surface zone soil
moisture is more tightly coupled with root zone soil
moisture than other models. The spring and summer
Chinese and Russian CLSM root zone soil moisture is
biased wet with a dry bias during the winter and fall
Generally, the CLSM surface zone and root zone soil
moisture are biased less than 0.08 vol/vol dry in dry climate
and frozen soil areas, and are biased wet over 0.08 vol/vol
(as high as 0.16 vol/vol) in wet climate areas.

[27] There are multiple possible sources of CLSM error.
First, simplified CLSM physics can lead to systematic
prediction error. For instance, the simple algorithm used
to convert the CLSM’s three soil moisture prognostic
variables to surface zone soil moisture can lead to a
misrepresentation of surface zone soil moisture. Moreover,

10 of 14



D13111

Winter

NI-MEISTER ET AL.: SOIL MOISTURE MODEL AND OBSERVATION ERRORS

D13111

20N
2

120E  130E  140E

110E  120E  130E  140E

20N
2

130E  140E

206 30E 40E  S0E  60E

b)

~0.2-0.16-0.12-0.08-0.04-0.020.02 0.04 0.08 0.12 0.16 0.2

Figure 9. Differences in seasonal climatology between the model and in situ (a) surface and (b) root

zone soil moisture (vol/vol).

the simple frozen ground treatment used by CLSM that
prevents all soil water movement (including infiltration)
when the soil temperature is below 0°C could lead to cold
region dry biases. This point has been demonstrated by

several studies where different models have given vastly
different soil moisture estimates with the same inputs [e.g.,
Koster and Milly, 1997; Entin et al., 1999]. Second, Berg et
al. [2003] have shown that the CLSM soil moisture is very
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sensitive to forcing errors. Generally the global observation-
corrected forcing improves the CLSM large-scale perfor-
mance, but some local errors may still exist. Third, predic-
tion errors can arise from incorrect CLSM vegetation and
soil parameters.

[28] Although the gravimetric method is considered to be
the most accurate way to estimate soil moisture, it can also
have serious errors. Sample cores may contain roots, rocks,
voids, and unique drainage characteristics that can lead to
large differences between adjacent samples. Further, differ-
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ences in sample extraction, compaction, handling, and
processing can lead to error. Using field-average wilting
point and bulk density can produce errors, or, as previously
mentioned, there may be error related to using a potentlally
incorrect soil-type based wilting point for converting plant
available soil moisture back to total soil moisture. We
estimate that the Russian and Mongolia SMDB observations
have a maximum 0.05 vol/vol wet bias due to errors in the
estimated wilting level, as 0.05 vol/vol is the maximum
wilting level estimate error observed.

[29] Finally, there are various errors of representation that
must be considered. These errors are related to differing
SMDB and CLSM averaging scales. The CLSM represents
average soil moisture over a 1- to 10,000-km? mesoscale
catchment, while in most cases only one in situ observation
from four pomt measurements averaged over a less than
0.2-km? area is available. A single point soil moisture
measurement cannot possibly represent the soil moisture
of a large catchment, especially given the well-known large
spatially heterogeneity of soil moisture. This issue is some-
what lessened by the multiple point sampling method, but
the scale mismatch remains a concern. An additional
representation error can be attributed to differing soil
moisture depths. The CLSM represents surface zone soil
moisture in the top 2 cm while the SMDB observations are
averaged over the top 5—10 cm depending on location.

3.4. SMMR Soil Moisture Climatology Error

[30] Figure 10 shows the climatological differences
between the SMMR, CLSM, and SMDB surface zone soil
moisture by season. Mongolian and Russian SMMR sur-
face zone soil moisture is drier than SMDB, except in the
northeastern Russian wet climate. Conversely, the Chinese
SMMR surface zone soil moisture is wetter for all seasons.
The east Eurasian SMMR surface zone soil moisture is
wetter than the CLSM, and drier in west Eurasia. Gener-
ally, SMMR is biased 0.05 vol/vol dry in dry climate and
0.1 vol/vol wet in wet climate regions, but with accurate
seasonal variations. The largest SMMR bias was found in
China and northeastern Russia, where precipitation and
vegetation cover are also larger.

[31] Additional factors to consider when studying the
discrepancy between SMMR and SMDB surface zone soil
moisture include SMDB measurement error (reviewed
earlier) and representation errors. The SMMR surface zone
soil m01sture estimate represents a 1-cm-deep average over
a 625-km? area, whereas the 5- to 10-cm-deep surface zone
SMDB observations represent the field scale at best. Influ-
ences from these factors likely affect the comparison
between SMMR and SMDB but are not possible to quantify
given the available data.

3.5. Toward Assimilation of Eurasian SMMR in
the CLSM

[32] Our analysis indicates that the CLSM and SMMR
surface zone soil moisture data contain both random and
bias error as compared with our best available in situ
observations. Therefore if SMMR is to be used to constrain
the CLSM in a data assimilation procedure, then the
predicted CLSM and SMMR errors to be used by the
assimilation must be matched to the observed errors pre-
sented in this paper. Moreover, the significant CLSM and
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SMMR bias must be removed prior to assimilation, such
that the observations are unbiased relative to the model.
Bias must also be removed from the model’s surface and
root zone soil moisture output, such that the model is
unbiased relative to observed soil moisture. An alternative
approach may be to constrain CLSM changes in soil
moisture rather than absolute values by using trends in
SMMR observations, providing these trends are valid;
Figure 6 shows that the SMMR soil moisture trend is
similar to the SMDB trend. Using this soil moisture trend
is a data assimilation challenge that we are currently
investigating.

[33] The main objective of this study was to characterize
the CLSM and SMMR error for data assimilation purposes.
The study found that while on average the CLSM error was
roughly the same magnitude as that for SMMR observations
with an average of 0.1 vol/vol, this value had significant
spatial and temporal variation, with times and locations
when SMMR error was much less than CLSM error. It is at
these times and locations that significant CLSM soil mois-
ture prediction accuracy improvement is expected through
assimilation of the SMMR observations. The challenge for
data assimilation is to be able to accurately predict the
complete spatial and temporal CLSM and SMMR soil
moisture error variation determined by this study.

4. Conclusions

[34] The catchment-based land surface model (CLSM)
and scanning multichannel microwave radiometer (SMMR)
soil moisture estimation errors have been evaluated using
long-term Soil Moisture Data Bank (SMDB) in situ soil
moisture observations available for China (a strong monsoon
climate), Mongolia (a dry climate), and Russia (a strong
seasonal climate including heavy snow during winter). It
was found that both the CLSM and SMMR observation
errors have large spatial, temporal, and vertical variations.
Generally, SMMR soil moisture estimates are biased but
have accurate seasonal variations, while CLSM underesti-
mates the seasonal soil moisture variation. In China, SMMR
soil moisture estimates are wet biased while CLSM has
limited vertical soil moisture variation. In Mongolia, both
SMMR and CLSM soil moisture are dry biased, with the
SMMR dry bias being smaller than the CLSM bias. There
are many CLSM, SMMR, and SMDB soil moisture estima-
tion deficiencies, including their disparate time and space
representation, which may limit the application of these
conclusions. Recently developed soil moisture data assimi-
lation techniques can constrain land surface model predic-
tions with remotely sensed soil moisture observations to give
better surface and root zone soil moisture estimates.
However, characterizing modeled and observed soil moisture
errors is critical for data assimilation use in deriving climate
prediction model initialization. This paper presents the errors
in SMMR and CLSM soil moisture that need to be charac-
terized by any assimilation scheme in order to produce
accurate soil moisture estimates.

[35] Acknowledgments. This work was funded by NASA contract
NCC5494. The authors gratefully acknowledge A. Robock’s group for
developing the Soil Moisture Data Bank; special thanks go to A. Robock,
K. Vinnikov, M. Mu, and J. Entin for their many discussions on details of
the Soil Moisture Data Bank. We also thank R. Koster for his many

13 of 14



D13111

valuable CLSM discussions, M. Owe and R. de Jeu for providing the
SMMR soil moisture data, A. Berg for providing the forcing data,
S. Mahanama for providing the CLSM soil and vegetation parameters,
and B. Cosgrove for soil data assistance.

References

Berg, A. A, J. S. Famiglietti, J. P. Walker, and P. R. Houser (2003),
TImpact of bias comection to reanalysis products on simulations of North
American soil moisture and hydrological fluxes, J. Geophys. Res.,
108(D16), 4490, doi:10.1029/2002JD003334.

Beven, K. J., and M. J. Kirkby (1979), A physically based variable con-
tributing area model of basin hydrology, Hydrol. Sci. Bull., 24(1), 43-69.

Bindlish, R., T. J. Jackson, E. Wood, H. L. Gao, P. Starks, D. Bosch, and
V. Lakshmi (2003), Soil moisture estimates from TRMM microwave
imager observations over the southem United States, Remote Sens.
Environ., 8(4), 507-515.

Boone, A., et al. (2004), The Rhone-aggregation land surface scheme inter-
comparison project: An overview, J. Clim., 17, 187-208.

Bowling, L. C., et al. (2003), Simulation of high latitude hydrological
processes in the Torne-Kalix basin, PILPS Phase 2e: 1. Experiment
description and summary intercomparisons, J. Global Planet. Change,
38(1-2), 1-30.

Cosby, B. J., G. M. Homberger, R. B. Clapp, and T. R. Ginn (1984), A
statistical exploration of the relationship of soil moisture characteristics to
the physical properties of soils, Water Resour. Res., 20, 682-690.

De Jeu, R., and M. Owe (2003), Further validation of a new methodology
for surface moisture and vegetation optical depth retrieval, Inz. J. Remote
Sens., 24, 4559-4578.

Duchame, A., R. D. Koster, M. J. Suarez, M. Stieglitz, and P. Kumar
(2000), A catchment-based approach to modeling land surface processes
in a general circulation model: 2. Parameter estimation and model
demonstration, J. Geophys. Res., 105, 24,823-24,838.

Entin, J. K., A. Robock, K. Y. Vinnikov, S. Qiu, V. Zabelin, S. Liu,
A. Namkhai, and T. Adyasuren (1999), Evaluation of global soil wetness
project soil moisture simulations, J. Meteorol. Soc. Jpn., 77, 183—198.

Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and
A. Namkhai (2000), Temporal and spatial scales of observed soil
moisture variations in the extratropics, J. Geophys. Res., 105,
11,865-11,877.

Gao, H., E. F. Wood, M. Drusch, M. F. McCabe, T. J. Jackson, and
R. Bindlish (2003), Using TRMM/TMI to retrieve soil moisture over
southern United States from 1998 to 2002: Results and validation, Eos
Trans. AGU, 84(46), Fall Meet. Suppl., Abstract H21C-04.

Houser, P. R., et al. (2001), The Global Land Data Assimilation System,
GEWEX News, 11(2), 11-13.

Koster, R. D., and P. C. D. Milly (1997), The interplay between transpira-
tion and runoff formulations in land surface schemes used in atmospheric
models, J Clim., 10, 1578—-1591.

Koster, R. D., and M. J. Suarez (1995), Relative contributions of land and
ocean processes to precipitation variability, J. Geophys. Res., 100(D7),
13,775-13,790.

NI-MEISTER ET AL.: SOIL MOISTURE MODEL AND OBSERVATION ERRORS

D13111

Koster, R. D., M. J. Suarez, and M. Heiser (2000a), Variance and predict-
ability of precipitation at seasonal-to-interannual timescales, J. Hydrome-
teorol., 1, 26—46.

Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar
(2000b), A catchment-based approach to modeling land surface processes
in a general circulation model: 1. Model structure, J. Geophys. Res.,
105(20), 24,809-24,822.

Owe, M., R. de Jeu, and J. P. Walker (2001), A methodology for surface
soil moisture and vegetation optical depth retrieval using microwave
polarization difference index, JEEE Trans. Geosci. Remote Sens., 39,
1643-1654.

Reichle, R. H., J. P. Walker, R. D. Koster, and P. R. Houser (2002),
Extended versus ensemble Kalman filtering for land data assimilation,
J. Hydrometeorol., 3(6), 728-740.

Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg (2004), Global soil
moisture from satellite observations, land surface models, and ground
data: Implications for data assimilation, J. Hydrometeorol., 5(3), 430-
442

Reynolds, C. A., T. J. Jackson, and W. J. Rawls (2000), Estimating soil
water-holding capacities by linking the Food and Agriculture Organiza-
tion soil map of the world with global pedon databases and continuous
pedotransfer functions, Water Resour. Res., 36, 3653-3662.

Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger,
N. A. Speranskaya, S. Liu, and A. Namkhai (2000), The global soil
moisture data bank, Bull. Am. Meteorol. Soc., 81, 1281-1299.

Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, A. D. Dazlich, G. J.
Collatz, and D. A. Randall (1996), A revised parameterization (SiB2)
for atmospheric GCMs: Part II. The generation of global fields of
terrestrial biophysical parameters from satellite data, J. Clim., 9(4),
706-737.

Verdin, K. L., and S. K. Greenlee (1996), Development of continental scale
digital elevation models and extraction of hydrographic features, in Pro-
ceedings, Third International Conference/Workshop on Integrating GIS
and Environmental Modeling, [CD-ROM, 8.2], U.S. Natl. Cent. for
Geogr. Inf. and Anal., Univ. of Calif., Santa Barbara.

Vinnikov, K. Y., A. Robock, N. A. Speranskaya, and A. Schlosser (1996),
Scales of temporal and spatial variability of midlatitude soil moisture,
J. Geophys. Res., 101, 7163-7174.

Walker, J. P., and P. R. Houser (2001), A methodology for initializing soil
moisture in a global climate model: Assimilation of near-surface soil
moisture observations, J. Geophys. Res., 106(D11), 11,761-11,774.

P. R. Houser, Center for Research on Environment and Water, 4041
Powder Mill Road, Suite 302, Calverton, MD 20705-3106, USA.

W. Ni-Meister, Department of Geography, Hunter College, City
University of New York, New York, NY 10021, USA. (wenge.ni-meister@
hunter.cuny.edu)

J. P. Walker, Department of Civil and Environmental Engineering,
University of Melbourne, Parkville, Victoria 3010, Australia.

14 of 14



